Menu

Un nouvel outil d’édition du génome au service des maladies héréditaires rares

Les chercheurs ont développé un outil pour modifier le génome de cellules souches et rétablir la production de protéines thérapeutiques chez les malades. © Adobe Stock

Trouver des traitements adaptés pour les patients atteints de maladies héréditaires, comme l’hémophilie et la plupart des maladies métaboliques, constitue souvent un défi pour les chercheurs. L’édition ciblée du génome, via la technique CRISPR-Cas9 notamment, ouvre depuis quelques années des pistes intéressantes. Des chercheurs de l’Inserm, de l’Université d’Evry, de l’Université Paris-Saclay et du Généthon ont mis au point une nouvelle plateforme pour modifier le génome des cellules souches hématopoïétiques, à l’origine des cellules du sang. L’utilisation de ces outils pourrait apporter de nouvelles solutions thérapeutiques à de nombreux patients atteints de maladies génétiques rares. Les résultats de ces travaux sont publiés dans la revue Nature Communications.

Différentes maladies héréditaires, comme l’hémophilie ou la plupart des maladies métaboliques, sont caractérisées par l’absence de certaines protéines dans l’organisme. L’hémophilie en particulier est causée par un déficit des facteurs de coagulation. En cas de blessure, la coagulation du sang est empêchée, aboutissant dans certains cas à des hémorragies graves. Dans le cas des maladies métaboliques, la cause est un déficit d’enzymes métaboliques, qui entrave la dégradation de certains substrats et entraîne la défaillance d’organes vitaux, jusqu’au décès.

Si des traitements de substitution existent, ils peuvent s’avérer contraignants pour les patients et particulièrement coûteux. De plus, comme il s’agit de faire entrer dans l’organisme des protéines qui lui sont étrangères, ces traitements peuvent être neutralisés par le système immunitaire.

Pour explorer de nouvelles solutions thérapeutiques, une équipe du laboratoire « Approches génétiques intégrées de découvertes thérapeutiques pour les maladies rares » (Inserm/Université d’Evry/Université Paris-Saclay), dirigée par Mario Amendola, chercheur Inserm à Généthon, s’est intéressée à deux maladies héréditaires rares : l’hémophilie B et une maladie métabolique appelée maladie de Wolman.

La première concerne environ un garçon sur 25 000 et est causée par un déficit d’une protéine de la coagulation appelée facteur F IX. La seconde touche un enfant sur 100.000 naissances et est causée par un déficit de la lipase acide LAL.

Rétablir la production de protéines thérapeutiques

Les chercheurs ont développé une nouvelle plateforme d’édition du génome visant à rétablir la sécrétion de ces protéines. Décrit pour la première fois dans le journal Nature Communications, cet outil unique repose sur l’édition du génome de cellules souches hématopoïétiques. Ces cellules souches sont à l’origine des différentes cellules du sang, et se différencient notamment pour former les globules rouges.

Pour arriver à ce résultat, les chercheurs ont d’abord identifié et caractérisé une région du génome des cellules souches hématopoïétiques pouvant être modifiée de manière sûre. À l’aide du ciseau génétique « CRISPR-Cas 9 », les chercheurs y ont inséré des séquences d’ADN isolées, de manière à ce que seuls les globules rouges qui en sont dérivés puissent exprimer ensuite systématiquement une grande quantité du facteur F IX ou LAL, et ce de manière systématique.

« Cette étude vise à décrire pour la première fois une technique pour modifier le génome des cellules souches hématopoïétiques, pour que les globules rouges qui sont très abondants dans l’organisme, sécrètent ensuite les protéines thérapeutiques bénéfiques, sans risque pour les malades et sans rejet par le système immunitaire puisqu’elles sont produites par leurs cellules », précise Mario Amendola.

Ces travaux ouvrent donc des pistes thérapeutiques intéressantes pour de nombreux malades ; mais la plateforme devra désormais être testée dans un cadre clinique. « La technologie est prometteuse, et applicable à de nombreuses maladies, mais pour en faire une solution thérapeutique à part entière, il est essentiel de poursuivre ces travaux fondamentaux pour les mener jusqu’à l’hôpital, auprès des patients », conclut Mario Amendola.

Identification d’une signature sanguine prédictive de formes sévères de Covid-19

Image de microscopie du Coronavirus SARS-CoV-2 responsables de la maladie COVID-19 accrochés aux cellules épithéliales respiratoires humaines

Coronavirus SARS-CoV-2 responsables de la maladie COVID-19 accrochés aux cellules épithéliales respiratoires humaines©M.Rosa-Calatraval/O.Terrier/A.Pizzorno/E.Errazuriz-cerda

Quel patient va développer une forme grave de Covid-19 ? C’est une question essentielle à laquelle il faut répondre pour améliorer la prise en charge individuelle et le pronostic de ces patients. Dans une publication parue dans Science le 13 juillet, des équipes de l’Inserm et d’Université de Paris à l’Institut Imagine et des chercheurs de l’APHP et de l’Institut Pasteur décrivent un phénotype immunologique unique et inattendu chez les patients graves et critiques, consistant en une réponse fortement altérée des interférons (IFN) de type I, associée à une charge virale sanguine persistante et à une réponse inflammatoire excessive. Ces données suggèrent que la déficience en IFN de type I dans le sang pourrait être la marque des formes graves de Covid-19 et soulignent l’intérêt d’approches thérapeutiques associant l’administration précoce d’IFN avec une thérapie anti-inflammatoire adaptée ciblant l’IL-6 ou le TNF-α chez les patients en prévention d’une forme sévère.

Environ 5 % des personnes atteintes de Covid-19 évoluent vers une forme grave ou critique et développent notamment une pneumonie sévère se transformant en syndrome de détresse respiratoire aiguë. Si ces formes surviennent parfois au début de la maladie, les observations cliniques décrivent généralement une progression de celle-ci en deux étapes, commençant par une forme légère à modérée, suivie d’une aggravation respiratoire 9 à 12 jours après l’apparition des premiers symptômes. Cette évolution soudaine suggère une dérégulation de la réponse inflammatoire de l’hôte. Un nombre croissant d’indications suggère que cette aggravation est provoquée par une forte augmentation des cytokines. Cet emballement de la réponse inflammatoire est corrélé à une infiltration massive dans les poumons de cellules immunitaires innées, à savoir des neutrophiles et des monocytes, créant des lésions pulmonaires et un syndrome de détresse respiratoire aigu.

Par analogie avec une maladie génétique conduisant à une pathologie pulmonaire semblable et identifiée à l’institut Imagine par l’équipe du chercheur Inserm Frédéric Rieux-Laucat, l’hypothèse initiale supposait une production excessive des interférons (IFN) de type 1, un marqueur de la réponse aux infections. Or chez les patients gravement malades, les équipes de Darragh Duffy (Unité d’Immunobiologie des cellules dendritiques, Institut Pasteur/Inserm), de Frédéric Rieux-Laucat (Laboratoire d’immunogénétique des maladies auto-immunes pédiatriques de l’Institut Imagine – Inserm/Université de Paris), de Solen Kernéis (Equipe Mobile d’Infectiologie, AP-HP.Centre – Université de Paris) et de Benjamin Terrier (Département de Médecine Interne, AP-HP. Centre – Université de Paris) montrent que la production et l’activité des IFN de type I sont fortement diminuées dans les formes les plus sévères de la Covid-19.

A cela s’ajoute une charge virale sanguine persistante, témoignant du mauvais contrôle de la réplication virale par le système immunitaire des patients et conduisant à l’emballement d’une réponse inflammatoire inefficace et pathologique.

L’inflammation, provoquée par le facteur de transcription NF-kB, entraîne par ailleurs une augmentation de la production et de la signalisation du facteur de nécrose tumorale (TNF)-alpha et de l’interleukine IL-6, une cytokine pro-inflammatoire. 

Un taux d’IFN de type 1 caractéristique de chaque stade de la maladie

Cette faible signature des IFN de type I diffère de la réponse induite par d’autres virus respiratoires tels que le virus respiratoire syncitial humain ou le virus de la grippe A, tous deux caractérisés par une forte production de l’IFN de type I.

L’étude révèle par ailleurs que de faibles taux d’IFN de type 1 dans le plasma précèdent l’aggravation clinique des patients et leur transfert en soins intensifs. Les taux d’IFN de type 1 circulant caractériseraient même chaque stade de maladie, les taux les plus bas étant observés chez les patients les plus graves. Ces résultats suggèrent que dans l’infection à SARS-CoV-2 la production de l’IFN de type I est freinée chez l’hôte infecté, ce qui pourrait expliquer les formes sévères plus fréquentes chez des individus faiblement producteurs de cette cytokine, comme les personnes âgées ou ceux ayant des comorbidités.

Par conséquent, la déficience en IFN de type I pourrait être une signature des formes graves de la Covid-19 et pourrait permettre d’identifier une population à haut risque.

Ces résultats suggèrent en outre que l’administration d’IFN-alpha combinée avec une thérapie anti-inflammatoire ciblant l’IL-6 ou le TNF-α, ou des corticoïdes comme la dexamethasone, chez les patients les plus sévères pourrait être une piste thérapeutique à évaluer pour enrayer les formes sévères de Covid-19.

 

Une autre étude menée par le chercheur David Smadja au sein du laboratoire Innovations thérapeutiques en hémostase (Inserm/Université de Paris) a permis d’identifier deux autres biomarqueurs pour repérer les patients hospitalisés les plus à risque. Il s’agit de marqueurs de sévérité différents et complémentaires de ceux mis en avant dans cette nouvelle publication dans la revue Science.

En effet, les marqueurs mis en évidence par David Smadja et ses collègues sont des témoins d’une souffrance vasculaire qui corrèle avec la sévérité de la maladie de Covid-19. Ceux identifiés par Frédéric Rieux-Laucat et ses collègues mettent plutôt en évidence une mauvaise réponse du système immunitaire  « inné », avec une faible production des interférons de type I chez les patients les plus sévères.

Il est possible que cette mauvaise réponse immunitaire, qui est associée à une réplication virale plus importante, permette un effet pathogène plus important du virus sur le tissu endothélial, libérant alors les marqueurs identifiés par l’équipe de David Smadja.

Les cellules souches sanguines ont une mémoire immunitaire et ouvrent des pistes dans la recherche sur le Covid-19

Cellules immunitaires vues par microscopie à fluorescence. Les cellules immunitaires sanguines gardent en mémoire l’information d’infections passées pour ensuite produire davantage de cellules immunitaires comme les macrophages capturés dans cette image. © Sieweke lab/CIML.

 

Les cellules souches du sang auraient une propriété surprenante. En plus d’assurer le renouvellement continu des cellules sanguines, ces cellules gardent une trace des infections passées pour déclencher une réponse immunitaire plus rapide et plus efficace par la suite, d’après une nouvelle étude co-dirigée par la chercheuse Inserm Sandrine Sarrazin et par le chercheur CNRS Michael Sieweke du Centre d’immunologie de Marseille-Luminy (CNRS/Inserm/Aix-Marseille Université) et du Centre des thérapies régénératives de l’Université technique de Dresde (Allemagne). Cette découverte pourrait avoir un impact significatif sur les futures stratégies de vaccination, notamment celles explorées dans le cadre de la pandémie de Covid-19. Elle permettrait aussi de faire progresser la recherche sur de nouveaux traitements visant à moduler le système immunitaire. Ces résultats ont été publiés dans la revue Cell Stem Cell.

C’est un fait connu de longue date : le système immunitaire adaptatif a une mémoire. Ainsi, les lymphocytes deviennent spécifiques d’un agent pathogène particulier à éliminer après y avoir été exposés lors d’une infection et certains d’entre eux subsistent durablement dans l’organisme. Les principes de la vaccination reposent sur la connaissance de ces mécanismes immunitaires.

Plus récemment, des travaux ont suggéré que le système immunitaire inné, qui permet la défense de l’organisme de façon immédiate suite à une infection, a lui aussi une forme de mémoire. Des chercheurs ont par exemple montré que le système immunitaire inné continue d’être plus efficace en cas de réinfection malgré la durée de vie très courte des cellules immunitaire, comme les monocytes ou les granulocytes. Ils ont alors soupçonné que cette mémoire du système immunitaire inné était en fait inscrite dans les cellules souches sanguines, dont la durée de vie est très longue, et qui sont à l’origine de différentes cellules immunitaires matures.

Pour vérifier cette hypothèse, les chercheurs du Centre d’immunologie de Marseille-Luminy (CNRS/Inserm/Aix-Marseille Université) et du Centre des thérapies régénératives de l’Université technique de Dresde (Allemagne) ont effectué des travaux dont les résultats sont publiés dans Cell Stem Cell. L’équipe a exposé des souris à une molécule de surface de la bactérie E. coli (lipopolysaccharide ou LPS), un agent pathogène largement utilisé pour mimer des infections en laboratoire.

Ensuite, les chercheurs ont transféré des cellules souches sanguines prélevées chez ces animaux à d’autres souris non infectées et dont le système immunitaire avait préalablement été détruit. Le but était de reconstituer entièrement leur système immunitaire à partir de ces cellules souches.

Les chercheurs ont ensuite infecté des souris de ce groupe avec une bactérie vivante de l’espèce P. aeruginosa et ont constaté que le taux de mortalité n’était que de 25 %. Il atteignait en revanche 75 % chez des souris contrôles, dont les cellules souches n’avaient jamais été exposées à un agent pathogène. 

« Ce travail démontre de façon forte que les cellules souches sanguines ont une fonction de mémoire qu’on ne soupçonnait pas. Une première exposition à un pathogène les arme pour mieux affronter une prochaine infection», explique Sandrine Sarrazin.

Ce mécanisme n’est pas spécifique d’un agent pathogène puisque, dans une autre expérience, une première exposition des cellules souches sanguines à un antigène viral a protégé les souris contre une exposition secondaire à P. aeruginosa. De manière surprenante, les scientifiques ont donc découvert que la protection apportée par cette mémoire du système immunitaire s’étend au-delà du seul agent infectieux utilisé pour la première infection.

Les chercheurs se sont ensuite intéressés à la manière dont cette mémoire était codée. En étudiant le génome des cellules souches sanguines des souris infectées, ils ont constaté des modifications durables dans son organisation spatiale. Ces changements étaient susceptibles de modifier l’expression de certains gènes impliqués dans la réponse immunitaire innée. « Lors du premier contact avec l’agent pathogène, des gènes requis pour la réponse immunitaire sont en fait durablement mis en avant pour activer rapidement le système immunitaire lors d’une deuxième infection», explique Bérengère de Laval, première auteure de l’étude. Enfin, l’équipe a recherché des molécules impliquées dans ce changement de structure du génome et a découvert qu’une protéine appelée C/EBP bêta jouait un rôle majeur.

Des recherches pertinentes dans la lutte contre le Covid-19 ?

Ces résultats résonnent tout particulièrement en cette période de pandémie du coronavirus SARS-Cov-2.

Des observations récentes suggèrent que le vaccin BCG, connu pour induire lui aussi une mémoire immunitaire innée, agirait également au niveau des cellules souches sanguines et offrirait un certain degré de protection contre les infections respiratoires. Des études sont en cours pour tester son utilité contre le Covid-19.

Les découvertes de l’équipe pourraient éclairer les mécanismes en jeu dans cette protection au niveau moléculaire et ouvrir de nouvelles pistes vaccinales, y compris contre le Covid-19.

« Nos découvertes représentent une contribution majeure à la compréhension de la mémoire du système immunitaire et des fonctions des cellules souches du sang. Elles orientent en outre vers de nouvelles stratégies pour stimuler ou limiter la réponse immunitaire dans divers états pathologiques, et pourraient permettre d’affiner les stratégies de vaccination actuelles pour une meilleure protection face à divers agents pathogènes, y compris contre le SARS-CoV-2 », espère Michael Sieweke.

Une analyse rapide du génome aide au diagnostic d’enfants hospitalisés en réanimation néonatale

 

Adobe/Stock

Des équipes du CHU de Dijon-Bourgogne, de l’Inserm et du CEA viennent d’établir des résultats d’analyse génomique sur des nouveaux nés, sévèrement malades et hospitalisés en service de réanimation néonatale, dont le délai a été raccourci jusqu’à 38 jours contre 18 mois en moyenne actuellement. Grâce à cette analyse rapide du génome entier, le diagnostic apporté chez deux tiers des enfants inclus dans ce projet a permis une prise en charge plus rapide et mieux adaptée chez un tiers d’entre eux. Le déploiement de ce processus au cours des prochaines années permettra d’optimiser la prise en charge de ces enfants malades.

Alors que le séquençage du génome entier se déploie actuellement en diagnostic dans différents pays et que la France vient de lancer le Plan France Médecine Génomique 2025 (PFMG2025)¹, son utilisation en urgence en période néonatale reste encore peu répandue. Pourtant, la rapidité de réalisation de l’examen génétique est un facteur crucial lorsqu’un diagnostic est requis en urgence, situation fréquente en ce qui concerne les maladies rares à révélation pédiatrique précoce ou à progression rapide. Les équipes de CHU de Dijon-Bourgogne, de l’Inserm et du CEA ont mené une étude pilote de faisabilité du séquençage haut débit de génome en urgence avant d’envisager un tel processus à l’avenir dans le cadre du PFMG2025.

Dans le cadre de cette étude pilote, Fastgenomics², une trentaine d’enfants hospitalisés en réanimation néonatale dans huit CHU de la filière AnDDI-rares³ a bénéficié, au cours des neuf derniers mois, d’une analyse génomique en urgence. Le séquençage haut débit du génome des enfants et de leurs parents et une analyse bioinformatique primaire ont été effectués sur la plateforme de production de séquences du Centre national de recherche en génomique humaine (CEA-CNRGH), en collaboration avec le Très Grand Centre de Calcul (TGCC) du CEA et au centre de calcul de l’Université de Bourgogne (CCuB). L’interprétation des données génomiques a été réalisée par la Fédération Hospitalo-Universitaire (FHU) TRANSLAD, en collaboration étroite avec l’équipe de recherche Inserm U1231 GAD.

La mobilisation des équipes a permis de rendre les résultats d’analyse dans un délai de 49 jours, allant au plus vite à 38 jours. Ce délai est particulièrement court pour un diagnostic génétique. En effet, malgré des évolutions importantes, le délai moyen d’obtention d’un diagnostic génétique en France reste actuellement encore long : de 1,5 ans en moyenne, et jusqu’à 5 ans pour 25 % des patients. L’analyse rapide des génomes de ces nouveau-nés a permis de poser un diagnostic pour deux tiers d’entre eux, un tiers ayant pu bénéficier d’une prise en charge plus rapide et mieux adaptée.

Ces analyses rapides du génome ont été rendues possibles grâce aux avancées majeures dans le séquençage haut débit de l’ensemble des gènes. Les technologies de nouvelle génération de séquençage haut débit de l’ADN, qui permettent l’étude de l’ensemble du génome d’un individu, sont apparues ces dernières années comme un outil de choix pour l’étude des maladies rares. Ces technologies de pointe sont déployées au CNRGH et ont déjà permis d’impliquer de nombreux gènes dans de nombreuses maladies. L’équipe de la FHU TRANSLAD du CHU DijonBourgogne a été l’une des premières en France à démontrer l’intérêt du séquençage de l’exome (représentant 1% de la taille totale du génome) dans le diagnostic de pathologies sévères à révélation pédiatrique précoce, des anomalies du développement et de la déficience intellectuelle.

Le diagnostic des maladies rares en période néonatale

Les maladies rares (touchant moins d’une personne sur 2 000) constituent un enjeu majeur de santé publique car elles représentent environ 8 000 maladies et touchent plus de 3 millions de personnes en France. Majoritairement de révélation pédiatrique, elles sont responsables de 10 % des décès avant l’âge de 5 ans. Jusqu’à 80 % de ces maladies seraient d’origine génétique. L’établissement d’un diagnostic apporte de nombreux bénéfices aux patients et à leurs familles : clarifier la cause, proposer un pronostic plus précis, accéder à un traitement ou à des protocoles d’essais thérapeutiques, établir les risques de récurrence, éviter la redondance de nombreux autres tests diagnostiques, prévenir des futures complications connues, faciliter l’obtention d’aides spécifiques aux familles, et parfois de se mettre en lien avec d’autres familles affectées par la même pathologie.

L’obtention d’un diagnostic est un défi de taille pour des pathologies à révélation pédiatrique précoce et à évolution rapide, dont les causes génétiques sont très hétérogènes, telles que les épilepsies, les maladies du métabolisme, les cardiopathies, les pathologies musculo-squelettiques ou autres syndromes polymalformatifs. Le Plan National Maladies Rares 3 (PNMR3) prévoit de réduire l’errance diagnostique à une année, car elle est responsable d’ « une aggravation possible de l’état des malades, un retard sur les possibilités de conseil génétique et un gaspillage de ressources médicales (multiplicité des consultations diagnostiques) ».

Dans le contexte de maladies graves néonatales, l’obtention d’un diagnostic rapide est d’autant plus importante. En effet, le diagnostic, posé précisément, permettrait de modifier la prise en charge de l’enfant, qu’il s’agisse d’une adaptation thérapeutique (par exemple dans le cas de maladies métaboliques ou d’épilepsies), de l’adressage à un spécialiste de la pathologie, d’une adaptation diététique, de la réalisation d’examens complémentaires, et/ou de la réévaluation d’indication chirurgicale, voire de la prise en compte de ce résultat dans une discussion de poursuite des soins.

 

1 En 2016, la France a lancé le Plan France Médecine Génomique 2025 (PFMG2025). Son ambition est de déployer le séquençage de génome pour le diagnostic des maladies rares, par la mise en place de plateformes de séquençage à très haut débit pour réaliser massivement le séquençage du génome entier et d’études pilotes permettant de définir les modalités de prescription de ces examens.

2 Fastgenomics : Etude pilote nationale élaborée par la filière de santé nationale AnDDI-rares, la Fédération Hospitalo-Universitaire TRANSLAD et le CEA-CNRGH et soutenu par un don financier du laboratoire SANOFIGENZYME.

3 Filière AnDDI-rares : Filière de santé nationale maladies rares dédiées aux maladies avec anomalie du développement somatique et cognitif. http://anddi-rares.org

Rôle des consultations génétiques dans le diagnostic des enfants et des adolescents atteints de troubles du spectre de l’autisme

Structure tridimensionnelle d’un fragment d’ADN ©Inserm/Villoutreix, Bruno

Les recherches sur l’origine génétique des troubles du spectre de l’autisme (TSA) se sont significativement développées ces dernières années. Cependant, de nombreux patients concernés n’en bénéficient pas encore systématiquement. Le Pr Arnold Munnich, pédiatre-généticien à l’Hôpital Necker-Enfants malades AP-HP, professeur à l’Université de Paris, et président de la fondation Imagine-Inserm/Université de Paris/AP-HP-, a piloté pendant 20 ans une étude qui met en évidence l’intérêt d’étendre le dépistage génétique à un nombre plus important de patients souffrant de TSA avec déficit intellectuel. Ces résultats font l’objet d’une publication dans la revue Molecular autism.

Les troubles du spectre de l’autisme (TSA) se caractérisent par des difficultés d’apprentissage et d’insertion sociale. Ce trouble majeur de la communication peut prendre différentes formes sans être nécessairement associé à un déficit intellectuel. Il touche environ 700 000 personnes en France.

Les preuves de l’origine génétique des TSA sont de plus en plus nombreuses. Toutefois, leur diagnostic et leur prise en charge n’évoluent pas au même rythme. 

Le Pr Arnold Munnich, pédiatre-généticien à l’Hôpital Necker-Enfants malades AP-HP, professeur à l’Université de Paris, et président de la fondation Imagine, a mené pendant 20 ans et dans 26 hôpitaux de jour et établissements de santé mentale d’Ile-de-France (1) une étude ayant pour objectif de rechercher les causes génétiques des TSA. Celle-ci s’inscrit dans le cadre de la Consultation Mobile Régionale de Génétique de la Fondation l’Élan Retrouvé, dirigée par le psychiatre Moïse Assouline. Avec une équipe mobile de généticiens et de soignants de l’Institut Imagine -Inserm/Université de Paris/AP-HP- et de la Fondation l’Élan Retrouvé, Arnold Munnich a rencontré 502 patients atteints de TSA et leurs proches, sur leur lieu de soins, d’accueil ou de vie.

« Il existe de multiples causes, certaines génétiques, d’autres environnementales, qui peuvent expliquer les TSA, explique le Pr Arnold Munnich. Lors des consultations, on s’attache à faire la part des choses et à identifier les formes génétiques pour mieux expliquer le diagnostic aux parents. » Les équipes ont constaté que dans plusieurs cas, aucune consultation ni test génétique n’avaient été proposés aux patients.

Des résultats qui confirment l’intérêt d’étendre les analyses génétiques à un plus grand nombre de patients

Les patients se sont vus proposer différents tests génétiques. L’Hybridation Génomique Comparative sur Réseau d’ADN (CGH-array) – qui a remplacé le caryotypage car plus performante – a été réalisée sur 388 des 502 patients. Elle a permis de détecter des anomalies génétiques chez 34 d’entre eux. Chez 19 patients, il s’agissait d’anomalies non héréditaires, chez 4 autres elles étaient héritées de l’un des parents, et pour les 11 restants la transmission n’a pu être établie (enfant adopté, patient décédé…).

Chez les 141 patients pour lesquels la CGH n’avait rien décelé, un séquençage nouvelle génération (NGS – New Generation Sequencing) a permis d’identifier pour 33 des patients des variants génomiques impliqués dans le TSA et les déficiences intellectuelles. 23 de ces variants n’étaient pas héréditaires. Les 10 restants avaient été transmis par les parents, dont la moitié étaient liés au chromosome X.

Par ailleurs, le dépistage du Syndrome de l’X fragile – un syndrome génétique rare causant souvent un retard cognitif – a été réalisé chez 312 des patients qui n’avaient jamais été testés auparavant pour ce syndrome ; 4 d’entre eux étaient positifs pour ce syndrome.

Au total, 27 gènes mutés de la maladie ont été décelés. Tous les cas de TSA diagnostiqués présentaient une déficience intellectuelle modérée à sévère. Les résultats montrent que combiner la technique NGS à la CGH et au dépistage du syndrome de l’X fragile permet d’améliorer significativement la précision du diagnostic.

Pour un meilleur diagnostic des troubles du spectre de l’autisme

Cette étude conduit le Pr Arnold Munnich et ses collègues à proposer pour l’ensemble des enfants atteints de TSA une stratégie diagnostique reposant dans un premier temps sur l’étude des gènes les plus fréquemment rencontrés dans les TSA avec déficit intellectuel. Le plus souvent, les altérations génétiques impliquées dans les TSA ne sont pas héréditaires. Dans cette étude, les mutations sont de novo dans 23/33 des cas, soit 70% des cas. Dans ce cas, le diagnostic génétique permet de lever le doute sur le risque transmission à un autre enfant. Dans le cas des formes familiales, il permet d’informer du risque les parents désireux d’avoir un second enfant.

Si à ce jour, la reconnaissance de l’origine génétique des TSA ne débouche pas encore sur un traitement, elle marque une étape importante pour les parents pour qui, selon le Pr Arnold Munnich, « connaître les mécanismes en jeu dans la maladie de leur enfant n’est pas vécu comme une stigmatisation, mais plutôt comme un soulagement qui les aide à mieux comprendre et parfois même à dépasser les difficultés. » Et de préciser « nommer la maladie, c’est déjà la soigner, c’est donner la possibilité de surmonter l’épreuve en la pensant, c’est prendre en compte les symptômes, tantôt avec des médicaments, tantôt avec des méthodes éducatives ou rééducatives adaptées, tantôt par une meilleure prise en charge. »

De plus, le diagnostic génétique ouvre la voie à une meilleure compréhension des différents mécanismes de TSA et à des recherches pouvant déboucher sur de nouvelles stratégies thérapeutiques.

 

(1) Centre Françoise Grémy-Santos Dumont, Antony, Chevilly Larue, Fontenay aux Roses, André Boulloche, La Colline, Serge Lebovici; Alternance 92, Alternance 75, Cour de Venise, Villa d’Avray, Adam Shelton, du Breuil, Amalthée, Jeunes Appedia, Cognacq Jay, l’Arche à Paris, Centre Raphael, les Petites Victoires, Notre Ecole, Le Cèdre Bleu, Alternat, Centre Georges et Lili Garel

Une thérapie génique à l’essai pour traiter la myopathie myotubulaire

 

Des chercheurs Inserm et CNRS de l’Institut de génétique et de biologie moléculaire et cellulaire (Inserm/CNRS/Université de Strasbourg) ont découvert comment la myotubularine, protéine déficitaire dans la myopathie myotubulaire, interagit avec l’amphiphysine 2 et proposent de cibler cette dernière pour traiter les patients. Ces travaux sont parus le 20 mars 2019 dans Science Translational Medicine.

La myopathie myotubulaire est une maladie génétique rare, affectant environ un enfant sur 50 000. Elle est liée à une mutation sur le gène MTM1 situé sur le chromosome X et se manifeste par une diminution d’adhésion des cellules musculaires entre elles et une altération des fibres musculaires. Ce phénomène entraine une grande faiblesse musculaire, y compris au niveau respiratoire, et provoque un décès prématuré avec deux tiers des patients qui ne dépassent pas l’âge de deux ans. A ce jour, il n’existe pas de traitement.

En explorant les interactions de la myotubularine, protéine codée par le gène MTM1, avec une autre protéine, l’amphiphysine 2 codée par le gène BIN1, également exprimée dans les muscles et impliquée dans des myopathies similaires, l’ équipe Inserm « Physiopathologie des maladies neuromusculaires », avec la collaboration du CNRS, à l’Institut de génétique et de biologie moléculaire et cellulaire (CNRS/Inserm/Université de Strasbourg) a découvert comment ces protéines travaillent ensemble et propose une nouvelle cible thérapeutique. De précédents travaux avaient en effet montré que la myotubularine et l’amphiphysine 2 peuvent interagir physiquement en se liant l’une à l’autre.

Pour explorer le lien fonctionnel entre les deux, les chercheurs ont développé un modèle de souris transgéniques déficitaires en MTM1 et ont croisé ces animaux avec d’autres souris dont certaines n’expriment pas BIN1 et d’autres qui au contraire, surexpriment ce gène. Ils n’ont obtenu aucun animal déficitaire à la fois en MTM1 et BIN1, prouvant qu’au moins l’une des deux protéines est nécessaire au développement des fibres musculaires et à la survie du fœtus. A l’inverse, et c’est la bonne surprise, la surexpression de BIN1 a permis de corriger la myopathie liée au déficit de MTM1 et d’obtenir une espérance de vie équivalente aux animaux sauvages. En analysant de plus près les muscles, les chercheurs ont constaté une organisation et une taille correcte des fibres musculaires avec une bonne adhésion des cellules entre elles. Ils ont donc fait l’hypothèse que MTM1 est un activateur de la protéine bin1 in vivo, et que fournir cette dernière en grande quantité pourrait permettre de se « passer » de MTM1.

Pour vérifier si BIN1 est une bonne cible thérapeutique, ils ont mené dans un second temps une expérience de thérapie génique chez des souris déficitaires en MTM1. Ils ont administré le gène BIN1 humain grâce à un vecteur viral de type AAV par injection systémique (intra-péritonéale) après la naissance des rongeurs. Cette intervention a nettement réduit les symptômes de la maladie et prolongé la survie des souris malades, à hauteur de celle de souris saines.

« Nous avons là la preuve de concept que le gène BIN1 humain présente un potentiel important pour traiter la myopathie myotubulaire liée à un déficit en myotubularine, avec un résultat spectaculaire chez la souris. Nous aimerions maintenant poursuivre ce développement avec des essais précliniques et espérons pouvoir proposer à terme un traitement aux patients actuellement confrontés à un désert thérapeutique », conclut Jocelyn Laporte, responsable de l’équipe Inserm qui a réalisé ces travaux.

La thérapie génique inverse durablement une surdité congénitale chez la souris

Image par immunofluorescence de l’épithélium sensoriel d’une cochlée de souris traitée par thérapie génique © Institut Pasteur

Des chercheurs de l’Institut Pasteur, de l’Inserm, du CNRS, du Collège de France, de Sorbonne Université et de l’Université Clermont Auvergne, et en collaboration avec les universités de Miami, de Columbia et de San Francisco, viennent de parvenir à restaurer l’audition au stade adulte chez un modèle murin de la surdité DFNB9, un trouble auditif représentant l’un des cas les plus fréquents de surdité congénitale d’origine génétique. Les sujets atteints de surdité DFNB9 sont sourds profonds, étant dépourvus du gène codant pour l’otoferline, protéine essentielle à la transmission de l’information sonore au niveau des synapses des cellules sensorielles auditives. Grâce à l’injection intracochléaire de ce gène chez un modèle murin de cette surdité, les chercheurs sont parvenus à rétablir la fonction de la synapse auditive et les seuils auditifs des souris à un niveau quasi-normal. Ces résultats, publiés dans la revue PNAS, ouvrent la voie à de futurs essais de thérapie génique chez des patients atteints de DFNB9.

Plus de la moitié des cas de surdité congénitale profonde non syndromique ont une cause génétique, et la plupart (~ 80%) de ces cas sont dus à des formes autosomiques récessives de surdité (DFNB). Les implants cochléaires sont actuellement la seule option permettant une récupération auditive chez ces patients.

Les virus adéno-associés (AAV) sont parmi les vecteurs les plus prometteurs pour le transfert de gènes dans le but de traiter des maladies humaines. La thérapie génique basée sur les AAV est une option thérapeutique prometteuse pour le traitement des surdités, mais son application est limitée par une fenêtre thérapeutique potentiellement courte. En effet, chez l’humain, le développement de l’oreille interne s’achève in utero et l’audition débute à environ 20 semaines de gestation. En outre, les formes génétiques de surdité congénitale sont généralement diagnostiquées au cours de la période néonatale. Les approches de thérapie génique dans les modèles animaux doivent donc en tenir compte et l’efficacité du gène thérapeutique doit être démontrée pour une injection du gène effectuée après la mise en place de l’audition. La thérapie doit alors conduire à la réversion de la surdité déjà installée. Dans ce but, l’équipe dirigée par Saaïd Safieddine, chercheur CNRS au sein de l’unité de Génétique et de physiologie de l’audition  (Institut Pasteur/ Inserm),  et coordinateur du projet, a utilisé un modèle murin de DFNB9, une forme de surdité humaine représentant 2 à 8 % de l’ensemble des cas de surdité génétique congénitale.

La surdité DFNB9 est due à des mutations dans le gène qui code pour l’otoferline, une protéine jouant un rôle majeur dans la transmission de l’information sonore au niveau des synapses des cellules ciliées internes[1]. Les souris mutantes dépourvues d’otoferline sont sourdes profondes en raison d’une défaillance complète de la libération de neurotransmetteur par ces synapses en réponse à la stimulation sonore, et ce malgré l’absence d’anomalie décelable de l’épithélium sensoriel. Les souris DFNB9 constituent donc un modèle approprié pour tester l’efficacité de la thérapie génique virale lorsqu’elle est administrée à un stade mature. Cependant, la capacité limitée d’empaquetage de l’ADN par les AAV (environ 4,7 kilo-bases (kb)), rend difficile l’utilisation de cette technique pour des gènes dont la séquence codante (ADNc) dépasse 5 kb, tel que le gène Otof codant pour l’otoferline, dont la séquence  codante est de 6 kb. Les chercheurs ont surmonté cette limitation en adaptant une approche d’AAV, dite duale, parce qu’elle utilise deux vecteurs recombinants différents, l’un contenant la partie 5’ et l’autre la partie 3’ de l’ADNc de l’otoferline.

Une seule injection de la paire de vecteurs dans la cochlée de souris mutantes à des stades adultes a permis de reconstituer la séquence codante de l’otoferline par recombinaison des segments d’ADN 5′ et 3′, conduisant à la restauration durable de l’expression de l’otoferline dans les cellules ciliées internes, puis à une restauration de l’audition.

Les chercheurs ont ainsi obtenu une première preuve de concept du transfert viral d’un ADNc fragmenté dans la cochlée en utilisant deux vecteurs, en montrant que cette approche permet d’obtenir la production de l’otoferline et de corriger durablement le phénotype de surdité profonde chez la souris.

Les résultats obtenus par les chercheurs suggèrent que la fenêtre thérapeutique pour le transfert de gène local chez les patients atteints de surdité congénitale DFNB9 pourrait être plus large que prévu, et donnent l’espoir de pouvoir étendre ces résultats à d’autres formes de surdité. Ces résultats font l’objet d’une demande de brevet.

En plus des institutions citées dans le premier paragraphe, ce travail a été financé par la Fondation pour la recherche médicale, l’Union européenne (TREAT RUSH) et par l’Agence nationale de la recherche (EargenCure et LabEx Lifesenses).

 

La figure de gauche est une représentation schématique de l’oreille humaine : les vibrations sonores sont collectées par l’oreille externe composée du pavillon et du conduit auditif. L’oreille moyenne, composée du tympan et des osselets, transmet les vibrations sonores à l’oreille interne où se trouve la cochlée, organe de l’audition responsable de la transmission du message auditif au système nerveux central. La figure de droite montre une image par immunofluorescence de l’épithélium sensoriel d’une cochlée de souris traitée, où les cellules ciliées internes ont été marquées en vert pour révéler l’otoferline. L’otoferline est détectée dans la quasi-totalité de ces cellules. La zone à fort grossissement dans l’encadré montre une cellule ciliée interne qui n’a pas été transduite. © Institut Pasteur

[1] Travaux publiés par l’unité de Génétique et de physiologie de l’audition de l’Institut Pasteur et de l’Inserm (UMRS1120) :  » Otoferlin, defective in DFNB9 deafness, is essential for synaptic vesicle exocytosis at the auditory ribbon synapse  » Cell, 20 octobre 2006

Alzheimer : identification d’agrégats de protéines cibles potentielles pour soigner la maladie

Agrégation de la protéine Tau dans la maladie d’Alzheimer. ©Inserm/U837, 2008

 

La propagation des agrégats de la protéine Tau dans le cerveau contribue à la progression de la maladie d’Alzheimer. Des chercheurs du Laboratoire des maladies neurodégénératives : mécanismes, thérapies, imagerie (CNRS/CEA/Université Paris-Sud, MIRCen), en collaboration avec l’Ecole normale supérieure, Sorbonne Université et l’Inserm, viennent d’identifier les cibles de ces agrégats. Publiés dans EMBO Journal le 10 janvier 2019, ces travaux permettront la conception d’outils capables de bloquer ces éléments clés dans la propagation des agrégats et de contrecarrer ainsi leur effet pathologique.

L’agrégation des protéines alpha-synucléine, pour la maladie de Parkinson, et Tau, pour la maladie d’Alzheimer, est intimement liée à la progression de ces pathologies neurodégénératives. Ces agrégats se propagent d’une cellule neuronale à l’autre en se liant aux cellules. Ils se multiplient[1] pendant cette propagation. Il a été montré que la propagation et l’amplification de ces agrégats protéiques sont délétères et contribuent à l’évolution de ces maladies.

La compréhension de la formation de ces agrégats, de leur propagation et de leur multiplication dans les cellules du système nerveux central présente un potentiel thérapeutique : elle permettrait de cibler ces processus et d’agir sur leurs conséquences.

Propagation des protéines

L’étape clé dans la propagation d’agrégats pathogéniques est la fixation d’agrégats provenant de cellules neuronales affectées aux membranes de cellules indemnes. Après avoir identifié les cibles des agrégats pathogéniques de la protéine alpha-synucléine (Shrivastava et al, 2015 EMBO J), l’équipe du Laboratoire des maladies neurodégénératives (CNRS/CEA/Université Paris-Sud, MIRCen, Fontenay-aux-Roses), en collaboration avec l’Ecole normale supérieure, Sorbonne Université et l’Inserm, vient d’identifier les cibles des agrégats de la protéine Tau. Il s’agit de la pompe sodium/potassium et des récepteurs du glutamate, deux protéines essentielles à la survie des neurones. L’expérience a été menée sur des neurones de souris en culture.

Modification des membranes neuronales

Les chercheurs ont également mis en évidence que les agrégats pathogéniques modifient la membrane des neurones en redistribuant les protéines membranaires. L’intégrité membranaire — et plus particulièrement celle des synapses, nœud de communication essentiel entre neurones — est affectée. Ces modifications sont délétères pour les neurones car elles entraînent une communication anormale entre eux ainsi que leur dégénérescence.

Ces travaux expliquent ainsi le dysfonctionnement précoce des synapses et la dégradation de communication normale observés dans les réseaux neuronaux au cours de l’évolution de la maladie.

Vers de nouvelles thérapies

Ils ouvrent aussi la voie à la conception de nouvelles stratégies thérapeutiques fondées sur la protection de l’intégrité synaptique, la restauration de l’activité des récepteurs membranaires de la protéine Tau et l’utilisation de leurres pour empêcher l’interaction délétère entre agrégats pathogènes de la protéine Tau et leurs cibles membranaires. Ces approches thérapeutiques pourront être menées à l’aide de neurones humains puisque les chercheurs du laboratoire viennent de développer ce type de cultures en collaboration avec le laboratoire I-Stem (Institut des cellules souches pour le traitement et l’étude des maladies oncogéniques, AFM-Téléthon/Inserm/Université Evry-Val d’Essonne) et Sorbonne Université. Cette dernière étude est également publiée le 10 janvier 2019, dans Stem Cell Reports[2].

[1] Ils s’amplifient en recrutant les protéines endogènes alpha-synucléine et Tau des cellules affectées pendant cette propagation

[2] Propagation of α-Synuclein strains within human reconstructed neuronal network. Simona Gribaudo, Philippe Tixador, Luc Bousset, Alexis Fenyi, Patricia Lino, Ronald Melki, Jean-Michel Peyrin, Anselme Louis Perrier, Stem Cell Reports, le 10 janvier 2019.

A propos du Laboratoire des maladies neurodégénératives : mécanismes, thérapies, imagerie (LMN), unité de recherche associant le CEA, le CNRS et l’Université Paris-Sud.

Le laboratoire rassemble près de 60 scientifiques dont les thèmes de recherche en neurosciences couvrent les mécanismes de dégénérescences, les modèles animaux, l’imagerie cérébrale, et l’étude de stratégies thérapeutiques géniques, cellulaires et médicamenteuses pour les maladies neurodégénératives, en particulier la maladie d’Alzheimer, la maladie de Parkinson et la maladie de Huntington.

Le LMN est situé au sein de MIRCen (Molecular Imaging Research Center) une installation de recherche préclinique développée par le CEA et l’Inserm. MIRCen est un des départements de l’institut de biologie François Jacob du CEA, sur le site de Fontenay-aux-Roses du CEA Paris-Saclay.

Découverte de nouveaux mécanismes à l’origine de la migraine

©Photo by Anh Nguyen on Unsplash

Des chercheurs du CNRS, d’Université Côte d’Azur et de l’Inserm ont mis en évidence un nouveau mécanisme lié à l’apparition de la migraine. En effet, une mutation génétique induit le dysfonctionnement d’une protéine normalement capable d’inhiber une activité électrique provoquant des crises migraineuses. Leurs résultats, publiés dans la revue Neuron le 17 décembre, ouvrent la piste pour l’élaboration d’antimigraineux.

Alors que 15% de la population adulte dans le monde est touchée par la migraine, aucun traitement curatif efficace sur le long terme n’a pour le moment été mis sur le marché. Les crises migraineuses sont liées, entre autres, à l’hyperexcitabilité électrique des neurones sensoriels. Leur activité électrique est contrôlée par des protéines génératrices de courant appelées canaux ioniques, et notamment par le canal TRESK qui a une fonction inhibitrice sur l’activité électrique. Or, les chercheurs ont montré qu’une mutation du gène codant pour cette protéine entraine sa scission en deux protéines dysfonctionnelles : l’une est inactive et l’autre, en ciblant d’autres canaux ioniques (K2P2.1) stimule fortement l’activité électrique des neurones, provoquant des crises migraineuses.

Si les chercheurs avaient déjà mis en évidence le caractère héréditaire des migraines, ils n’en connaissaient pas le mécanisme. En démontrant que la scission de TRESK induit l’hyperexcitabilité des neurones sensoriels et le déclenchement de la migraine, ces travaux, menés à l’Institut de biologie Valrose (CNRS/Inserm/Université Côte d’Azur), constituent une nouvelle piste de recherche pour l’élaboration d’antimigraineux. Ils font l’objet d’un brevet1 : l’idée est de cibler les canaux K2P2.1 afin de réduire l’activité électrique des neurones, prévenant ainsi le déclenchement de migraines.

De plus, les chercheurs proposent que ce mécanisme inédit, provoquant la formation de deux protéines au lieu d’une seule, soit maintenant considéré pour étudier d’autres maladies liées à des mutations génétiques ainsi que pour leur diagnostic.

 

1 Brevet PCT/EP2018/067581 “Methods and compositions for treating migraine”

Les cancers sous pression : visualiser l’action du système immunitaire sur l’évolution des tumeurs

Cancérogenèse : Surexpression de TRF2, marqué en vert, dans les vaisseaux tumoraux, marquage rouge, dans un cancer ovarien. ©Inserm/Wagner, Nicole, 2014

À mesure que les tumeurs se développent, elles évoluent génétiquement. Comment le système immunitaire agit-il en présence de cellules tumorales ? Comment exerce-t-il une pression sur la diversité génétique des cellules cancéreuses ? Des chercheurs de l’Institut Pasteur et de l’Inserm, ont capté par vidéo in vivo l’action des cellules immunitaires lors de la prolifération de cellules cancéreuses, grâce à un marquage élaboré de coloration spécifique. Ces résultats seront publiés le 23 novembre 2018 dans la revue Science Immunology. Au fur et à mesure de leur prolifération incontrôlée, les cellules tumorales accumulent de nouvelles mutations et des modifications de leur génome. Ce processus progressif implique que chez un même patient, il existe une importante diversité génétique parmi les cellules cancéreuses. Si les cellules du système immunitaires et notamment les cellules T peuvent potentiellement éliminer ces cellules anormales, la diversité tumorale peut s’avérer délétère car elle rend difficile l’action du système immunitaire et peut rendre inefficaces certaines thérapies. Comprendre cette course effrénée entre évolution tumorale et réponse immunitaire est la clef du succès des futures immunothérapies. Les chercheurs de l’unité Dynamique des réponses immunes (Institut Pasteur / Inserm), dirigée par Philippe Bousso, en collaboration avec Ludovic Deriano, responsable de l’unité Intégrité du génome, immunité et cancer (Institut Pasteur) ont étudié comment les réponses immunitaires qui se développent spontanément contre les tumeurs modifient cette hétérogénéité tumorale. Ils ont montré par quels mécanismes les réponses immunitaires peuvent réduire très fortement la diversité tumorale et ainsi favoriser l’émergence de cellules tumorales plus homogènes génétiquement. Dans cette étude, les chercheurs sont parvenus à marquer de couleurs différentes chaque sous-clone de cellules cancéreuses chez un modèle murin. En suivant cet éventail de couleurs, ils ont pu ainsi caractériser dans le temps et dans l’espace, l’évolution de l’hétérogénéité tumorale. Ils ont pu de plus observer les contacts qu’ont les cellules T avec les cellules cancéreuses et déterminer comment une partie des cellules tumorales sont détruites. Ces travaux mettent en lumière l’effet drastique que peut avoir le système immunitaire pour façonner la tumeur en réduisant son hétérogénéité. Ce même effet sur l’hétérogénéité des cellules tumorales a également été observé lors de traitements fondés sur la levée de freins du système immunitaire, des immunothérapies dont le développement a été récompensé cette année par le prix Nobel de Médecine et de Physiologie. Ces travaux montrent que la prise en compte des interactions entre immunothérapies et hétérogénéité tumorale pourrait aider à définir les meilleures combinaisons et séquences thérapeutiques.

Visualisation de l’action des cellules immunitaires colorées. Cette vidéo représente en gris les cellules tumorales. En violet, les cellules T spécifiques de la tumeur, ont des contacts avec les cellules cancéreuses et les détruisent. Les cellules tuées apparaissent en bleu. En vert, les cellules de contrôle circulent mais ne tuent pas les cellules tumorales. © Institut Pasteur / Philippe Bousso

Visualisation des différents amas de différents clones de cellules cancéreuses. Cette vidéo illustre comment les sous-clones de la tumeur marqués chacun par une couleur différente (bleu, orange ou vert) se développent au sein de la moelle osseuse. Les vaisseaux apparaissent en blanc. © Institut Pasteur / Philippe Bousso

 
Ces travaux ont été financés en plus des organismes cités plus haut, par la Fondation de France, l’Inca et par l’ERC (European Research Council).

fermer