Menu

Les bébés doués de conscience ?

Les bébés ont longtemps été considérés comme des êtres aux compétences limitées et ayant des comportements principalement automatiques, de type réflexe, qui ne s’accompagnent pas d’une expérience subjective consciente. Et pourtant : des chercheurs du CNRS au Laboratoire de sciences cognitives et psycholinguistiques (CNRS/ Ecole normale supérieure, Paris/EHESS) en collaboration avec des chercheurs de NeuroSpin (Inserm/CEA) montrent que les nourrissons possèdent dès 5 mois une forme de conscience similaire à celle des adultes. Ces résultats sont publiés dans Science le 19 avril 2013.

Un bébé de 5 mois qui a participé à cette étude avec sa mère.

©Sofie Gelskov

Comment déterminer si les bébés sont conscients de leur environnement alors même qu’ils ne savent pas encore parler et sont incapables de communiquer leurs propres pensées ? Pour résoudre cette question complexe, les chercheurs ont utilisé une approche alternative consistant à déterminer si les marqueurs neuronaux de la conscience observés chez des adultes pouvaient être également présents chez le bébé. En effet, chez l’adulte, des recherches récentes montrent que le cerveau répond en deux étapes à la perception d’un évènement extérieur. Pendant les premières 200 à 300 millisecondes, le traitement perceptif est totalement non-conscient et s’accompagne d’une activité neuronale qui augmente de façon linéaire, c’est-à-dire avec une amplitude qui croit de manière constante en fonction de la durée de présentation des objets perçus. Puis, une seconde étape, plus tardive (après 300 ms), se caractérise par une réponse non-linéaire correspondant au seuil de la conscience. Seules les durées de présentation assez longues pour atteindre ce seuil donnent lieu à une réponse tardive et s’accompagnent d’une perception consciente. Cette réponse tardive et non-linéaire du cerveau est considérée comme un marqueur neuronal de la conscience.

Dans cette étude, la présence de ce marqueur de conscience a été testée sur 80 nourrissons âgés de 5, 12 et 15 mois. Pour ce faire, ils ont été invités à regarder des visages présentés plus ou moins longuement (donc sur des durées inférieures ou supérieures à leur seuil de perception), tandis que les réponses électriques de leur cerveau étaient enregistrées par électro-encéphalographie. Pour tous les groupes d’âge, les chercheurs ont observé la même réponse tardive et non-linéaire que chez les adultes, confirmant la présence de cette « signature neuronale de la conscience » chez les bébés. Toutefois, alors que cette réponse est enregistrée autour de 300 ms chez l’adulte, celle-ci est beaucoup plus tardive chez les bébés, ne s’établissant qu’après au moins une seconde chez les enfants les plus jeunes. Ces résultats révèlent que les mécanismes cérébraux qui sous-tendent la conscience perceptive sont déjà présents très tôt chez les nourrissons. Mais ceux-ci sont relativement lents et subissent une accélération progressive au cours du développement.

Produire de nouveaux neurones en toutes circonstances : un défi à portée de souris…

Améliorer la production de neurones chez les personnes âgées présentant un déclin cognitif est un défi majeur face à une société vieillissante et l’émergence de pathologies neurodégénératives, comme la maladie d’Alzheimer. Des chercheurs de l’Inserm et du CEA viennent de montrer que le blocage pharmacologique de la molécule TGFβ améliore la production de nouveaux neurones dans un modèle de souris. Ces résultats encouragent le développement de thérapies ciblées qui permettraient d’améliorer la production de neurones pour pallier le déclin cognitif chez les personnes âgées et de limiter les lésions cérébrales causées par la radiothérapie.

Ces travaux sont publiés dans la revue EMBO Molecular Medicine.

Neurone en orange entouré d'astrocytes en vert orangé, les noyaux sont bleus

©L Simonneau/Inserm

De nouveaux neurones se forment régulièrement dans le cerveau adulte afin de garantir le maintien de l’ensemble de nos capacités cognitives. Cette neurogenèse peut être altérée dans différentes situations et en particulier :
-au cours du vieillissement,
-après traitement d’une tumeur cérébrale par radiothérapie. (L’irradiation de certaines zones du cerveau est effectivement un traitement adjuvant central pour les tumeurs cérébrales adultes et pédiatriques.)

D’après certaines études, la diminution de notre capital « neurones » contribuerait à un déclin cognitif irréversible. Chez la souris par exemple, les chercheurs ont rapporté que l’exposition du cerveau à radiations de l’ordre de 15 Gy[1]  est accompagnée d’une perturbation de la mémoire olfactive et d’une diminution de la neurogenèse. ll en est de même au cours du vieillissement où une diminution de la neurogenèse serait associée à une perte de certaines facultés cognitives. Chez les patients subissant une radiothérapie consécutive à l’élimination d’une tumeur cérébrale, on observe les mêmes phénomènes.

Les chercheurs étudient comment préserver ce « capital neurones ». Pour cela, ils ont tenté de savoir quels étaient les acteurs responsables de l’altération de la neurogenèse.

Contrairement à ce que l’on aurait pu croire, leurs premières observations montrent que ni les fortes doses d’irradiation, ni le  vieillissement, ne font disparaître complètement  les cellules souches neurales capables de reformer des neurones (à l’origine donc de la neurogenèse). Celles qui survivent restent localisées dans une petite zone particulière du cerveau (la zone sous-ventriculaire).Toutefois, elles semblent ne pas pouvoir fonctionner correctement.

Des expériences complémentaires ont permis de constater que dans les deux situations, irradiation et vieillissement, des niveaux élevés de la cytokine[2] TGFβ, provoquent la dormance des cellules souches, augmentent leur susceptibilité à l’apoptose et diminuent le nombre de nouveaux neurones.

« Notre étude conclut que, bien que la neurogenèse diminue pendant le vieillissement et après une irradiation à forte dose, beaucoup de cellules souches ont survécu pendant plusieurs mois en conservant leurs caractéristiques « souche » explique Marc-André Mouthon, l’un des principaux auteurs, avec Jose Pineda et François Boussin.

La seconde partie de ce travail a permis de montrer que le blocage pharmacologique de TGFβ restaure la production de nouveaux neurones chez des souris irradiées ou âgées.

Pour les chercheurs, ces résultats encouragent le développement de thérapies ciblées pour bloquer le TGFβ afin de limiter les lésions cérébrales causées par la radiothérapie ou améliorer la production de neurones chez les personnes âgées présentant un déclin cognitif.

[1] La dose reçue par la matière vivante en radiothérapie se mesure en gray (Gy) : 1Gy correspond à un transfert d’énergie de 1 joule à 1 kilogramme de matière.

[2] Molécule synthétisée par les cellules du système immunitaire, essentielle à la communication des cellules.


Une puce 100% biocompatible pour mesurer l’activité du cerveau

Interpréter les signaux émis par le cerveau et les traduire en commande utilisables par l’homme est l’objectif poursuivi par les chercheurs qui développent ce que l’on appelle des interfaces cerveau-machine. Dans le domaine de la santé, ces interfaces pourraient servir aux personnes paralysées. Jusqu’à présent les chercheurs se heurtent à des limites technologiques car les capteurs utilisés pour enregistrer l’activité cérébrale ne le font pas encore assez finement.
Avec l’appui du département de Bioélectronique de l’Ecole des Mines de St Etienne
, des chercheurs dirigés par Christophe Bernard au sein de l’Unité Inserm 1106 « Institut de neurosciences des systèmes »  ont conçu un système de capteurs de l’activité du cerveau 100% biocompatibles en matériau organique. Le support épais de quelques microns est fin et souple comme de la cellophane, et très résistant. Le système a été testé dans un modèle animal d’épilepsie. La qualité du signal cérébral enregistré est multipliée par 10 par rapport aux systèmes classiques d’enregistrement de l’activité cérébrale. Ces travaux sont publiés dans la revue Nature Communications.

Des nouvelles techniques au service de la santé, OpenVibe. Une interface cerveau-ordinateur ou ICO (en anglais Brain-Computer Interface ou BCI) permet à son utilisateur d'envoyer des commandes à un ordinateur ou à une machine uniquement par la pensée.

 Les interfaces Homme-machine jouent depuis quelques années, un rôle central dans le diagnostic et le traitement de certaines pathologies, dans le pilotage de membres artificiels (exosquelettes) ou encore dans la conception d’organes sensoriels artificiels. Dans le cas des interfaces cerveau-machine, le problème consiste à capter les signaux émis par le cerveau et les traduire en commande utilisable par l’homme. Ces signaux sont utilisés à des fins diagnostiques (comme par exemple pour déterminer si une personne est épileptique et quelles sont les régions du cerveau responsables des crises), pour relier un œil artificiel aux régions du cerveau qui traitent l’information visuelle, ou pour commander des exosquelettes pour les personnes paralysées à partir de l’enregistrement des neurones des régions du cerveau qui contrôlent la motricité des membres.

Afin de capturer le maximum de signaux émis par le cerveau, il faut être en contact direct avec le système nerveux central. Or, cette prouesse est très difficile à réaliser avec des systèmes de mesure non invasifs (c’est-à-dire avec des électrodes posées sur la tête). Autre inconvénient, la plupart des capteurs utilisés aujourd’hui ne sont pas biocompatibles, ce qui déclenche une réaction de défense des tissus aboutissant à une perte de signal au bout d’un certain temps. Enfin, et c’est le plus important, les signaux captés sont pré-amplifiés loin de la source, ce qui entraîne la présence d’un bruit important dans les enregistrements, empêchant leur exploitation optimale.

Une solution : les transistors organiques

Le département de Bioélectronique de l’Ecole des Mines de St Etienne à Gardanne, l’Institut de Neuroscience des Systèmes (Unité Inserm 1106) et la PME Microvitae basée à Gardanne apportent une solution technologique à ces problèmes.

Les chercheurs ont conçu un système de capteurs de l’activité du cerveau en matériau organique (à base de composés de carbone) 100% biocompatibles. Le support est épais de quelques microns, fin et souple comme de la cellophane, et très résistant.

Mais la révolution technologique est d’avoir fait en sorte que le site d’enregistrement soit un transistor organique qui produit une amplification locale du signal. Le système a été testé dans un modèle animal d’épilepsie. La qualité du signal est multipliée par 10 par rapport aux systèmes classiques, ce qui est considérable selon les chercheurs.

Une telle solution technologique va permettre l’enregistrement de nombreux neurones et l’interfaçage avec les structures du cerveau sur le long terme. Parmi les applications cliniques immédiates, on peut envisager l’aide au diagnostic de l’épilepsie et la cartographie fonctionnelle dans le cadre de la neurochirurgie des tumeurs cérébrales. Bien entendu, ces transistors peuvent aussi être utilisés pour des enregistrements non invasifs en contact direct avec la tête.

En plus de la pathologie, cette technologie permettra des avancées majeures en recherche fondamentale, notamment dans le cadre du Human Brain Project financé à 1 milliard d’Euros par la communauté européenne. Les systèmes d’enregistrements basés sur les transistors organiques préfigurent les interfaces Homme-machine de demain.

Sept facteurs de risque génétiques associés à la DMLA

Un groupe de recherche international a découvert sept nouvelles régions du génome humain associées à un risque accru de développer une dégénérescence maculaire liée à l’âge (DMLA), une des principales causes de cécité. Thierry Léveillard, directeur de recherche Inserm à l’Institut de la vision (Inserm / UPMC / CNRS), coordonne le groupe européen de l’AMD Gene Consortium, réseau de chercheurs internationaux représentant 18 groupes de recherche. Les résultats sont présentés en ligne le 03 mars 2013 dans la revue Nature Genetics

DMLA atrophique

© Inserm

La DMLA touche la macula, une région de la rétine responsable de la vision centrale. C’est grâce à la macula que l’être humain peut réaliser certaines tâches qui nécessitent une bonne acuité visuelle, comme la lecture, la conduite et la reconnaissance faciale. À mesure que la DMLA progresse, réaliser de telles tâches se complique et finit par être impossible. Bien que certaines formes de DMLA puissent être traitées si la maladie est détectée suffisamment tôt, il n’existe aucun remède.

Les scientifiques ont montré que l’âge, le régime alimentaire et la consommation de tabac influencent le risque de développement de la DMLA chez l’individu. La génétique joue également un rôle important. Souvent héréditaire, la DMLA est plus fréquente au sein de certains groupes de population.

En 2005 des chercheurs ont montré notamment que certaines variations du gène codant pour le facteur H du complément – un composant du système immunitaire inné – sont associées à un risque majeur de développer une DMLA.

Dans cette nouvelle étude l’AMD Gene Consortium a rassemblé les données de 18 groupes de recherche afin d’augmenter la puissance des précédentes analyses. L’analyse du consortium comprenait des données provenant de plus de 17 000 individus atteints de DMLA, qui ont été comparées aux données de plus de 60 000 individus ne souffrant pas de DMLA. L’analyse actuelle a identifié sept nouvelles régions génétiques associées à la maladie. Comme dans le cas des 12 régions précédemment découvertes, ces sept régions dispersées sur l’ensemble du génome pointent vers des gènes et des fonctions altérées dans la DMLA.

« Le challenge que représente la complexité génétique de la DMLA a pu être surmonté par l’association de tous les centres travaillant sur cette pathologie cécitante dans le monde ; l’union fait ici la force de la démonstration »

explique Thierry Léveillard, directeur de recherche Inserm au sein de l’Institut de la vision (Inserm / UPMC / CNRS), coordinateur du sous-consortium EU-JHU regroupant plusieurs centres européens et un aux USA ayant tenu un rôle important dans cette étude.

Au total, depuis 2005, 19 régions identifiées comme étant associées à la DMLA ont été identifiées. Elles impliquent une variété de fonctions biologiques, y compris la régulation du système immunitaire inné, l’entretien de la structure cellulaire, la croissance et la perméabilité des vaisseaux sanguins, le métabolisme lipidique et l’athérosclérose.

Comme avec d’autres maladies courantes telles que le diabète de type 2, le risque pour un individu de développer une DMLA est probablement déterminé non pas par un mais par plusieurs gènes. Une analyse plus complète de l’ADN des zones entourant les 19 régions identifiés par l’AMD Gene Consortium pourrait faire apparaître des variants génétiques rares ayant un effet déterminant sur le risque de DMLA. La découverte de tels gènes pourrait considérablement améliorer la compréhension qu’ont les scientifiques de la pathogénie de la DMLA et contribuer de façon significative à leur quête de traitements plus efficaces.

José-Alain Sahel, directeur de l’Institut de la vision (Inserm / UPMC / CNRS) :

« Sans le travail méthodique et coordonné de caractérisation clinique mené dans tous les centres, l’identification de tels marqueurs serait aléatoire. Ces corrélations cliniques seront très importantes prochainement dans l’application à la médecine prédictive et personnalisée. »

Un cerveau « simplifié » permet au robot iCub d’apprendre le langage

Le robot humanoïde iCub sur lequel travaille depuis de nombreuses années l’équipe dirigée par Peter Ford Dominey, directeur de recherche CNRS et de l’Université Lyon 1 dans l’unité Inserm 846 (Institut pour les cellules souches  et cerveau de Lyon) est dorénavant capable de comprendre ce qu’on lui dit et d’anticiper la fin d’une phrase. Cette prouesse technologique a  été rendue possible par la mise au point d’un « cerveau artificiel simplifié » qui reproduit certains types de connexions dites « récurrentes» observées dans le cerveau humain. Ce système de cerveau artificiel permet au robot d’apprendre, puis  de comprendre des phrases nouvelles, avec une structure grammaticale nouvelle. Il peut faire le lien entre deux phrases et peut même prédire la fin de la phrase avant qu’elle ne survienne.Ces travaux sont publiés dans la revue Plos One.

robot  ICub apprentissage

credit P Latron/inserm

Les chercheurs de l’Inserm et du CNRS ont réussi à mettre au point un réseau neuronal artificiel construit sur un des principes fondamental du cerveau humain : sa capacité à apprendre une nouvelle langue. Le modèle a été développé après des années de recherche au sein de l’Unité Inserm 846 (Institut de recherche sur les cellules souches et cerveau) grâce à l’étude de la structure du cerveau et la compréhension des mécanismes d’apprentissage.

Un des aspects les plus remarquables du traitement du langage est la rapidité avec laquelle il a lieu. Notre cerveau va, par exemple, traiter en temps réel les premiers mots d’une phrase et anticiper la suite, améliorant ainsi la rapidité avec laquelle nous traitons les informations. Toujours en temps réel, le cerveau révise continuellement ses prédictions grâce à l’interaction entre des informations nouvelles et le contexte formé  précédemment. Dans le cerveau, la région associant cortex frontal et striatum joue un rôle crucial dans ce processus.

En s’appuyant sur ces recherches, Peter Ford Dominey et son équipe ont développé un « cerveau artificiel » qui utilise une construction neuronale similaire à celle mise en place par le cerveau humain.

En raison de sa construction dite récurrente (avec des connections qui forment des boucles récurrentes locales) ce système de cerveau artificiel peut comprendre des phrases nouvelles, avec une structure grammaticale nouvelle. Il peut faire le lien entre deux phrases et peut même prédire la fin de la phrase avant qu’elle ne survienne.

Pour rendre cette avancée concrète, les chercheurs de l’Inserm ont intégré ce nouveau cerveau dans le robot humanoïde iCub.

Dans une démonstration vidéo, un chercheur demande au robot iCub de désigner une guitare (matérialisée par un objet bleu) avant de déplacer un violon vers la gauche (matérialisé par un objet rouge). Avant d’exécuter la tâche, le robot répète la phrase et explique qu’il a bien compris ce qu’on lui demande de faire.

Pour les chercheurs, l’apport de ces travaux pour la recherche sur certaines pathologies est important. Ce système pourrait être utilisé pour mieux comprendre la façon dont le cerveau traite la langue. «  Nous savons que, quand un mot inattendu arrive dans une phrase, le cerveau réagit de façon particulière. Ces réactions pouvaient jusqu’à présent être enregistrées avec des capteurs sur le cuir chevelu » explique Peter Ford Dominey. Le modèle mis au point par le Dr Xavier Hinaut et le Dr Peter Ford Dominey permet d’identifier la source de ces réponses dans le cerveau. Si ce modèle, basé sur l’organisation du cortex cérébral est correct, il pourrait contribuer à la compréhension des dysfonctionnements linguistiques possibles dans la maladie de Parkinson.

Ces recherches ont une autre implication importante : celle de contribuer un jour à l’apprentissage du langage par les robots. « Aujourd’hui, les ingénieurs ne peuvent tout simplement pas programmer toutes les connaissances requises dans un robot. Nous savons maintenant que la façon dont les robots vont acquérir leur connaissance du monde sera réalisable en partie grâce à l’apprentissage – comme le font les enfants.»,explique Peter Ford Dominey.

robot ICub en apprentissage

credit P Latron/Inserm

Treatrush (TreatRetUsher) : combattre la cécité dans le syndrome de Usher – une collaboration européenne au service d’une maladie rare

©Photo : Fotolia

A l’occasion de la journée internationale des maladies rares : 28 février 2013

Comment la recherche sur le syndrome de Usher – handicap héréditaire particulièrement invalidant, portant atteinte aux deux sens majeurs, l’audition et la vision – a-t-elle franchi une étape majeure dans la compréhension des mécanismes à l’origine de la rétinopathie pigmentaire ? Comment est-elle parvenue à améliorer le diagnostic clinique et à développer le diagnostic moléculaire ? Comment prépare-t-elle les essais de thérapie génique de la rétinopathie du syndrome ? Les scientifiques regroupés au sein du projet européen TREATRUSH (TreatRetUsher) présentent les avancées qu’ils ont réalisées. Douze partenaires de 7 pays sont réunis au sein de ce réseau financé par la Commission Européenne et coordonné par l’Université Pierre et Marie Curie (UPMC). En France, il rassemble des chercheurs du Collège de France, de l’Inserm, de l’Institut Pasteur, du CNRS et de l’UPMC, travaillant au sein de l’Institut de la Vision et de l’Institut Pasteur, ainsi que des cliniciens de l’hôpital des XV-XX et de l’hôpital Armand-Trousseau. 

Le syndrome de Usher est une atteinte héréditaire de l’audition et de la vision. Il touche environ 1 personne sur 10 000.

C’est la principale cause de surdité associée à une perte de la vision chez le sujet jeune.

Les trois types cliniques du syndrome, USH1, USH2 et USH3, se distinguent par la sévérité de l’atteinte auditive, la précocité de la rétinite pigmentaire et la présence ou non d’une atteinte vestibulaire qui se traduit par des troubles de l’équilibre. Sur chacun de ces aspects, la forme USH1 est la plus invalidante.

Au-delà des avancées majeures antérieurement réalisées sur l’identification des gènes responsables du syndrome et la compréhension de la pathogénie de l’atteinte auditive du syndrome, le projet Treatrush s’est fixé pour objectifs d’améliorer le diagnostic du syndrome, de comprendre les mécanismes cellulaires et moléculaires à l’origine de la rétinopathie et d’en préparer les essais de thérapie génique.

  • Répondre à l’impératif d’un diagnostic précoce

La baisse de la vision n’apparaissant que des années après celle de l’audition, l’absence d’un diagnostic précoce du syndrome  peut conduire les parents à faire le mauvais choix de l’apprentissage de la  langue des signes dès le plus jeune âge, en renonçant à une implantation cochléaire précoce. Dans ce but, ORLs et ophtalmologistes du consortium européen ont élaboré conjointement les protocoles d’investigation clinique qui doivent conduire à poser le diagnostic avant l’âge d’un an.

En parallèle, un diagnostic moléculaire robuste et rapide de l’ensemble des formes du syndrome a été développé. Une première étude[1] a permis de détecter les mutations présentes chez 54 patients. Elle a été complétée par la mise en place d’une nouvelle méthode[2]qui aujourd’hui vient de permettre d’analyser une cohorte de plus de 350 patients recrutés à travers l’Europe (France, Allemagne, Italie, Slovénie, Espagne).

  • Elucider les mécanismes physiopathologiques à l’origine de la rétinopathie.

Tandis que les mutants de souris dont les gènes Usher-1 sont défectueux ont une surdité profonde, ils ne présentent pas de rétinopathie. De ce fait, les mécanismes défectueux à l’origine de la rétinopathie du syndrome étaient totalement inconnus. Depuis 3 ans, les équipes du Pr Christine Petit, coordonnatrice du projet Treatrush, et du Pr José-Alain Sahel, ont tenté de comprendre les mécanismes physiopathologiques à l’origine de la rétinite pigmentaire chez les patients atteints du syndrome de Usher, en ayant recours à d’autres modèles animaux[3]. Ils y sont parvenus et ont ainsi jeté les bases d’un nouveau type de mécanisme de rétinopathie pigmentaire qui met en jeu de surcroît des structures des  photorécepteurs jusqu’ici négligées et dont le rôle est inconnu. Cette donnée est essentielle pour conduire tout protocole visant à améliorer les tentatives thérapeutiques.

Des équipes du projet, en Italie, en France et aux Etats-Unis, travaillent actuellement au développement d’une thérapie génique via des vecteurs viraux associés à l’adénovirus (AAV) capables de transférer efficacement des gènes thérapeutiques de petite taille dans les photorécepteurs rétiniens dans le but de bloquer leur dégénérescence. Ces vecteurs ont déjà fait leurs preuves dans d’autres formes de rétinites. Ils sont en cours d’essai pour certains gènes Usher chez l’animal.

Les avancées réalisées sur cette maladie rare ouvrent la voie à la compréhension et au traitement d’atteintes plus communes de la vision ou de l’audition. Comme l’expliquent Christine Petit et José-Alain Sahel, « les maladies fréquentes sont d’origine plus complexes et donc plus difficiles à étudier que les maladies rares monogéniques. Pourtant, les éléments qui y contribuent, pour nombre d’entre eux, doivent appartenir aux mêmes mécanismes élémentaires que ceux dont le déficit conduit à telle ou telle maladie rare. Pour s’en convaincre, prenons l’exemple du syndrome USH1. Les molécules codées par ces gènes forment le cœur de la machinerie de transduction auditive, machinerie qui convertit le signal sonore en signal électrique dans les cellules sensorielles auditives. Il va de soi, que dans des atteintes fréquentes de l’audition, quelle qu’en soit l’origine, cette machinerie est aussi une cible des déficits. Une constellation de maladies rares doit donc contribuer à modéliser les processus pathogéniques d’une maladie commune ». 

Le syndrome de Usher, une atteinte des deux principaux sens : l’audition et la vision

Ce syndrome est un handicap sensoriel héréditaire et la principale cause de surdité associée à une cécité. Il est responsable de 3 à 6% des surdités infantiles et d’environ 50% des cas de surdité sévère associée à une cécité chez l’adulte. La surdité est généralement congénitale tandis que les manifestations cliniques de la rétinite pigmentaire sont un peu plus tardives. Ce syndrome a été divisé en trois sous-types, USH1, USH2 et USH3 ; la forme USH1 est la plus sévère. Chez les enfants affectés par la forme USH1, l’atteinte de la vision n’est souvent découverte qu’autour de 8 à 10 ans. Or ce diagnostic tardif pèse lourdement sur une prise en charge médicale appropriée.
D’importants progrès scientifiques ont été réalisés depuis une quinzaine d’années par les généticiens et physiologistes de l’audition, avec l’identification de dix gènes responsables, et la découverte des mécanismes cellulaires et moléculaires dont le déficit explique les atteintes auditives du syndrome. A l’inverse, la pathogénie de la rétinopathie pigmentaire du syndrome demeurait inconnue. Une avancée majeure a été réalisée récemment dans la compréhension de l’atteinte rétinienne, dans le cadre du projet européen Treatrush, par les équipes des Pr. Christine Petit et José-Alain Sahel. Les protocoles d’exploration des patients ont été améliorés et standardisés pour permettre un diagnostic précoce. Un nouvel outil de diagnostic moléculaire a été développé, et plus de 400 patients venant de divers pays européens ont ainsi été testés. En 1995, le laboratoire du Pr. Christine Petit identifiait le premier gène à l’origine du syndrome USH1. Ce gène qui code la myosine VIIa rend compte de la majorité des cas de USH1. C’est précisément sur cette forme du syndrome qu’un essai de thérapie génique de la rétinopathie sera prochainement conduit par le Pr. José-Alain Sahel.

TREATRUSH – Lutter contre la cécité provoquée par le syndrome de Usher

TREATRUSH a pour but de traiter et de lutter contre la cécité provoquée par le syndrome de Usher. http://www.treatrush.eu

Le projet a débuté en février 2010 et dure 4 ans, avec un budget total d’environ 6 millions d’euros de l’Union Européenne (PC7). Le projet implique 12 partenaires, basés dans 7 pays :

Université Pierre et Marie Curie (UPMC), Paris, France : http://www.upmc.fr/
Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France : www.inserm.fr/
Eberhard Karl University of Tübingen  (EKUT), Tübingen, Allemagne : http://www.uni-tuebingen.de/en
Medical Research Council (MRC), Oxford, UK : http://www.mrc.ac.uk
Fondazione Telethon (FTELE.IGM), Naples, Italie : http://www.telethon.it/
Amsterdam Molecular Therapeutics (AMT), Amsterdam, Pays-Bas : http://www.amtbiopharma.com/
Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher-Institut for Biomedical Research, Bâle, Suisse : http://www.fmi.ch/
Faun Foundation (FAUN), Nuremberg, Allemagne
The Trustees of the University of Pennsylvania (UPENN), Philadelphia, USA : http://www.upenn.edu/
Institut de la Vision-Fondation Voir et Entendre, Paris, France               : http://www.institut-vision.org    http://www.fondave.org/
Johannes Gutenberg University Mainz, Mayence, Allemagne : http://www.uni-mainz.de/eng/
Massachusetts Eye and Ear Infirmary, Boston, USA : http://www.masseyeandear.org/


[1] Bonnet C, Grati M, Marlin S, Levilliers J, Hardelin JP, Parodi M, Niasme-Grare M, Zelenika D, Délépine M, Feldmann D, Jonard L, El-Amraoui A, Weil D, Delobel B, Vincent C, Dollfus H, Eliot MM, David A, Calais C, Vigneron J, Montaut-Verient B, Bonneau D, Dubin J, Thauvin C, Duvillard A, Francannet C, Mom T, Lacombe D, Duriez F, Drouin-Garraud V, Thuillier-Obstoy MF, Sigaudy S, Frances AM, Collignon P, Challe G, Couderc R, Lathrop M, Sahel JA, Weissenbach J, Petit C, Denoyelle F. (2011) Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Orphanet J Rare Dis. 6:21.

[2] Fakin A, Jarc-Vidmar M, Glavač D, Bonnet C, Petit C, Hawlina M. (2012) Fundus autofluorescence and optical coherence tomography in relation to visual function in Usher syndrome type 1 and 2. Vision Res. 75: 60-70.

[3] Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C. (2012) Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. J Cell Biol. 15;199(2):381-99.

POUR CITER CETTE PAGE :
Communiqué – Salle de presse de l’Inserm – Treatrush (TreatRetUsher) : combattre la cécité dans le syndrome de Usher – une collaboration européenne au service d’une maladie rare
avec ce lien cliquable: http://presse.inserm.fr/treatrush-treatretusher-combattre-la-cecite-dans-le-syndrome-de-usher-une-collaboration-europeenne-au-service-dune-maladie-rare/6598/


D’où vient l’énergie nécessaire au transport dans les neurones ?

Le transport des molécules dans les prolongements des neurones, appelés axones, est un processus capital pour la survie de ces cellules et le bon fonctionnement du système nerveux. Celui-ci est assuré par des vésicules qui se déplacent rapidement grâce à des moteurs moléculaires qui ont besoin d’énergie. Au laboratoire « Signalisation, neurobiologie et cancer » (Institut Curie/CNRS/Inserm) situé à l’Institut Curie, l’équipe de Frédéric Saudou[1], directeur de recherche Inserm, montre que ces vésicules ont leur propre système de production d’énergie nécessaire à leur transport et ne dépendent pas des mitochondries, qui sont la source principale d’énergie pour les cellules. Ce mécanisme met en jeu la glycolyse, qui est la première étape de la transformation du glucose ainsi que la protéine huntingtine, mutée dans la maladie de Huntington, une pathologie neurodégénérative. Ces résultats sont publiés le 31 janvier 2013 dans la revue Cell.

À l’inverse des cancers où les cellules prolifèrent, les maladies neurodégénératives telles que les maladies d’Alzheimer, de Parkinson ou de Huntington sont dues à la mort accélérée de neurones. Au laboratoire « Signalisation, neurobiologie et cancer » (Institut Curie/CNRS/Inserm) situé à l’Institut Curie, l’équipe de chercheurs dirigée par Frédéric Saudou étudie la fonction de la protéine huntingtine, mutée dans la maladie de Huntington. « Quand elle est altérée, la huntingtine entraîne, par un mécanisme encore mal connu, la mort accélérée des neurones du striatum, région du cerveau où débute la maladie de Huntington » explique Frédéric Saudou.

Son équipe a notamment démontré le rôle essentiel de la huntingtine dans le transport rapide de vésicules le long des prolongements neuronaux ou axones. Ainsi, la huntingtine stimule le transport des vésicules en interagissant avec les moteurs moléculaires, permettant leur acheminement dans des régions précises du cerveau comme le striatum, structure cérébrale atteinte dans la pathologie de Huntington.

L’ATP, moteur essentiel au transport des vésicules

D’où provient l’énergie cellulaire nécessaire pour assurer le transport de ces vésicules dans les axones sur des longues distances, qui peuvent dans certains cas atteindre un mètre ? La molécule d’adénosine triphosphate (ATP) est la source d’énergie commune aux espèces animales et végétales. Chez l’homme, celle-ci est produite majoritairement par des organites spécialisés de la cellule, les mitochondries. «Dans ce travail, nous montrons qu’un processus autre que les mitochondries est impliqué dans la fourniture d’énergie aux moteurs moléculaires[2] responsables du transport dans les axones» explique Frédéric Saudou. En effet, l’inhibition de la fonction des mitochondries n’a pas d’incidence sur ce transport rapide. En revanche, l’inactivation génétique d’une enzyme essentielle à la glycolyse, première étape de la transformation du glucose en énergie réduit, elle, significativement ce transport.

Un mécanisme dépendant de la protéine huntingtine

« Des enzymes permettant la glycolyse sont localisées directement sur les vésicules et produisent l’énergie nécessaire à leur déplacement dans les axones. Nous nous sommes alors interrogés sur le mécanisme qui assure sa fixation à la membrane des vésicules. Nos recherches établissent que l’attachement aux vésicules est assuré par la protéine huntingtine. En revanche nous ne savons pas encore si cette fonction est perturbée dans la maladie de Huntington » souligne Frédéric Saudou. Néanmoins les chercheurs n’excluent pas l’existence d’autres mécanismes pour lier ces enzymes de la glycolyse à la membrane de la vésicule.

Image prise en microscopie révélant la localisation au niveau des vésicules d’une enzyme de la glycolyse, la protéine GAPDH (en rouge), avec la huntingtine (en vert) dans un neurone  issu de cortex de rat. Les vésicules sont marquées spécifiquement en bleu.

©Diana Zala/Institut Curie

En savoir plus sur la maladie de Huntington

Affection neurologique rare, la maladie de Huntington touche 1 personne sur 10 000 et se manifeste à l’âge adulte. Les symptômes les plus caractéristiques sont des troubles mentaux (anxiété, irritabilité, dépression), une détérioration intellectuelle qui progresse jusqu’à la démence, auxquels sont associés des mouvements anormaux involontaires et saccadés des membres, de la tête et du cou.

L’anomalie génétique qui provoque la maladie de Huntington est une augmentation anormale de la répétition de trois acides nucléiques (C, A et G – appelé triplet CAG) dans le gène codant pour la protéine huntingtine. Il en résulte une expansion anormale d’une répétition d’un acide aminé (répétition polyglutamine ou polyQ) dans la protéine huntingtine. Les mécanismes qui conduisent à la pathologie sont encore mal connus et il n’existe pour l’instant aucun traitement pour prévenir l’apparition des symptômes chez les patients. La meilleure compréhension des processus cellulaires survenant au niveau des neurones devrait permettre l’identification de nouvelles stratégies thérapeutiques pour cette maladie neurodégénérative. La compréhension de ces mécanismes pourrait également avoir un intérêt pour d’autres pathologies comme les cancers.

[1] Frédéric Saudou est chef de l’équipe « Signalisation cellulaire et neurobiologie» dans l’unité Signalisation, neurobiologie et cancer Institut Curie/CNRS UMR 3306/Inserm U1005

[2] Les moteurs moléculaires responsables du transport de molécules ou de structures cellulaires le long du squelette de la cellule sont les protéines kinésine et dynéine.

Le Human Brain Project gagne la compétition du plus grand fonds scientifique européen

La Commission européenne a officiellement désigné le Human Brain Project (HBP) comme l’un de ses deux projets FET Flagship. Le HBP regroupera les scientifiques de tout le continent autour de l’un des plus grands défis de la science contemporaine: comprendre le cerveau humain.

Le Human Brain Project (HBP) a pour but de réunir toutes les connaissances actuelles sur le cerveau humain afin de le reconstituer, pièce par pièce, dans des modèles et des simulations informatiques. Ces modèles ouvriront de nouvelles perspectives dans le but de mieux comprendre le cerveau et les maladies neurologiques. Il s’agira également de développer des technologies novatrices dans les domaines informatiques et robotiques. Ce lundi 28 janvier, la Commission européenne a apporté son soutien à cette approche en annonçant qu’elle avait sélectionné le HBP pour être l’un des deux projets financés par son nouveau programme FET Flagship.

Fédérant plus de 80 Institutions de recherche Européennes et internationales, the Human Brain Project est prévu pour durer 10 ans (2013-2023). Son coût est estimé à 1.19 milliard d’euros.

Le  projet associera également plusieurs partenaires importants d’Amérique du Nord et du Japon. Il sera coordonné  par l’Ecole Polytechnique Fédérale de Lausanne (EPFL) en Suisse, par le neurobiologiste Henry Markram avec comme co-directeurs Karlheinz Meier de l’Université de Heidelberg, Allemagne, et Richard Frackowiak de la Centre Hospitalier Universitaire Vaudois (CHUV) et de l’Université de Lausanne (UNIL). La France coordonne trois des axes du projet : théorie des réseaux neuronaux (Alain Destexhe, CNRS), neurosciences cognitives (Stanislas Dehaene, Collège de France, Inserm, CEA), et aspects éthiques (Jean-Pierre Changeux, Collège de France, Institut Pasteur).

Dans sa composante « bottom-up », qui vise à caractériser tous les composants du cerveau, leur agencement, et leur intégration en circuits fonctionnels, le projet fait appel massivement au domaine des neurosciences cellulaires intégratives et computationnelles bien représentées en France, en particulier dans la région Ile de France (CNRS-UNIC, ENS, Paris V, Institut Pasteur, INRIA).

Dans sa composante « top-down », le projet cherche à éclaircir les circuits neuronaux à l’origine des fonctions cognitives, en s’appuyant sur des expériences sophistiquées en neuropsychologie cognitive et en imagerie cérébrale, complétées par la modélisation mathématique.

La reconnaissance  des objets et des actions, la conscience du corps et de soi, la prise de décision, la navigation spatiale sont autant de fonctions qui seront analysées par imagerie cérébrale et reproduites dans des simulations. Une attention particulièrement sera portée à la question, non résolue, du propre à l’espèce humaine : langage, symboles, représentation de l’esprit d’autrui, apparition d’aires nouvelles dans le cortex préfrontal.

Une cartographie fonctionnelle de haute résolution du cerveau humain sera menée de concert avec celle des principaux faisceaux de fibres qui permettent à ces modules de communiquer. Le projet vise en outre à faire émerger un modèle de l’apparition de ces structures pendant le développement cérébral. 

Là aussi la France avec le CEA, l’Inserm, l’INRIA, le CNRS et les infrastructures de NeuroSpin joueront un rôle majeur.

Les cartes multi-échelles du cerveau inférées de ces données seront partagées avec la communauté internationale, afin de développer un référentiel commun pour les recherches sur la structure et le fonctionnement cérébral.

Sur le plan théorique, l’HBP créera un Institut Européen des Neurosciences Théoriques (EITN), qui sera localisé en Région Parisienne en raison de sa forte communauté théorique et mathématique.  Cet Institut a pour but de devenir un carrefour des différents courants théoriques proposés pour explique la dynamique du cerveau, émergence de la conscience et les processus cognitifs. Il devrait dès la première phase du projet jouer un rôle important dans la recherche des mécanismes du codage neuronal en lien étroit avec les données expérimentales et les simulations numériques, ainsi que dans l’implantation de ces mécanismes dans les circuits « neuromorphiques » (des puces spécialisées dans la simulation des neurones et de leurs connexions). La simulation neuromorphique devrait aboutir à terme à un renforcement entre les équipes translationnelles du CEA-LETI en France et les infrastructures allemandes (BrainScales-Heidelberg et Dresde) et anglaises (SpiNNaker) de HBP.

credit HBP

HBP doit être vu comme un processus continu d’intégration interdisciplinaire et d’itération, dont la convergence ultime devrait permettre une compréhension unifiée des mécanismes et des principes de fonctionnement du cerveau.

La désignation du Human Brain Project en tant que Fet Flagship est le fruit d’un long travail de préparation et d’évaluation rigoureuse, mené pendant plus de trois ans par un panel de scientifiques indépendants, choisis par la Commission européenne. Dans les mois qui viennent, les différents partenaires négocieront un accord détaillé avec la Communauté portant sur une première phase de lancement de deux ans et demi (2013-mi-2016). Le projet débutera à la fin de l’année 2013.

Portrait scientifique du Human Brain Project

Le Human Brain Project fournira de nouveaux outils en vue d’une meilleure compréhension du cerveau et de ses mécanismes fondamentaux. Ces nouvelles connaissances serviront à développer des approches innovantes dans les domaines de la médecine et de l’informatique.

 Les technologies de l’information et de la communication (ICT) se trouvent au cœur du projet. Le Human Brain Project développera des plateformes ICT de neuroinformatique, de simulation du cerveau et de supercomputing. Ces plateformes permettront de collecter et d’unifier l’énorme quantité de données disponibles dans le monde entier pour le domaine des neurosciences, et de les intégrer dans des modèles et simulations. Les modèles seront vérifiés à la lumière des connaissances actuelles en biologie et mis à disposition de la communauté scientifique. Le but ultime est de permettre aux neuroscientifiques de comprendre comment s’articulent d’une part les aspects génétiques, moléculaires et cellulaires, et de l’autre la dimension cognitive et comportementale.

Une plateforme d’informatique médicale novatrice réunira les données cliniques du monde entier. Les chercheurs en médecine pourront ainsi accéder à ces précieuses informations et les intégrer dans la modélisation de maladies. L’idée est de pouvoir développer des techniques de diagnostic objectives pour les maladies neurologiques, de comprendre leurs mécanismes en profondeur, et de fournir un outil à même d’accélérer la mise au point de nouveaux traitements.

Enfin, le HBP créera des plateformes d’informatique neuromorphique et de neurorobotique. Il s’agit de développer de nouveaux systèmes informatiques et robotiques, dont le fonctionnement est basé sur la structure et les circuits cérébraux. Grâce à une connaissance plus profonde et détaillée du cerveau, il sera possible de résoudre les problèmes les plus critiques auxquels va faire face la technologie informatique: l’efficacité énergétique, la fiabilité, et les difficultés considérables qu’implique la programmation de systèmes informatiques complexes.

Une part importante du budget du HBP permettra à des scientifiques indépendants d’utiliser ces nouvelles plateformes pour leurs travaux de recherche. Le Human Brain Project a l’ambition de devenir un nouveau CERN dédié au cerveau.

OpenViBE2 : les interfaces Cerveau-Ordinateur appliquées aux jeux vidéo

OpenViBE2 (2009-2013) est un projet de recherche collaborative soutenu par le financement de l’ANR, et qui porte sur le potentiel des technologies dites d’ « interface cerveau-ordinateur » (ICO) dans le domaine des jeux vidéo. Ce projet a réuni l’ensemble des expertises scientifiques requises au sein d’un consortium pluridisciplinaire de 9 partenaires rassemblant des laboratoires académiques pionniers dans le domaine (Inria, Inserm, CEA, GIPSA-Lab), des industriels du jeu vidéo reconnus (UBISOFT, BLACKSHEEP STUDIO, KYLOTONN GAMES) et des spécialistes des usages et du transfert (LUTIN, CLARTE). Après plus de 3 ans de travaux, et l’obtention d’avancées scientifiques nombreuses, associées à la mise au point de prototypes industriels innovants, OpenViBE2 permet de mieux maîtriser l’avenir de ces technologies sur le marché français et international.

© Inserm / Hirsch, Philippe

  • Agir par la pensée grâce aux interfaces cerveau-ordinateur (ICO)

[break]Une interface cerveau-ordinateur permet à ses utilisateurs d’envoyer des commandes à un ordinateur en utilisant uniquement leur activité cérébrale. Les ICO utilisent des dispositifs électroencéphalographiques (EEG) basés sur des électrodes disposées à la surface du crâne, et qui enregistrent des signaux électriques correspondant aux échanges de courant électrique entre les neurones. L’activité électrique émise par le cerveau est analysée en temps-réel et traduite en commande pour un ordinateur, ou tout autre système automatisé, permettant ainsi de piloter un curseur vers la droite ou la gauche, simplement en imaginant les mouvements de sa main.

Initié en 2005 par l’Inria et l’Inserm, le premier projet OpenViBE (2005-2009) également soutenu par l’ANR, a abouti en 2009 à la mise au point d’un logiciel en open-source permettant de concevoir, développer et tester facilement des interfaces cerveau-ordinateur (http://openvibe.inria.fr). C’est aujourd’hui un logiciel reconnu et utilisé dans le monde entier. Le projet OpenViBE2 fait suite à ce premier projet, et vise à explorer plus en avant ces technologies en les étudiant dans un contexte applicatif particulièrement complexe : celui des jeux vidéo. Il s’agit d’un domaine d’application relativement nouveau pour les ICO. Mais l’arrivée de casques EEG à bas coût a ouvert la porte à ces applications.

L’objectif d’OpenViBE2 est donc d’améliorer les capacités actuelles de ces ICO et de tester leur utilisation et leur potentiel dans le domaine des jeux vidéo.

  • Les jeux vidéo: un marché en pleine expansion

[break]Après la commande « gestuelle » (joystick, souris, gamepad), la commande « mentale » est une nouvelle voie très prometteuse dans le domaine des jeux vidéo. Depuis le début des années 2000, les scientifiques ont abordé la question scientifique de l’intégration des technologies ICO pour interagir avec des environnements virtuels.

Dans ce contexte, le but du projet OpenViBE2 est d’identifier et d’utiliser l’état mental et les réponses cérébrales de l’utilisateur pour interagir avec le jeu et/ou adapter le contenu du jeu vidéo lui-même. Une approche très originale proposée dans le projet a été de considérer les ICO non plus comme une technique de substitution des interfaces traditionnelles (joystick, souris, gamepad) mais plutôt de voir dans les ICO un moyen de jouer d’une nouvelle façon, complémentaire aux techniques traditionnelles. Ainsi, le joueur peut continuer à utiliser son joystick et en parallèle ou à quelques moments clé du jeu, il pourra mobiliser également son activité cérébrale pour jouer.

  • Les avancées scientifiques du projet openvibe2

[break]Maladies et syndromes neurologiques, monde du divertissement ou encore vie quotidienne, OpenViBE2 ouvre la porte à des technologies innovantes et d’intérêts majeurs pour l’être humain. Au cours du projet OpenViBE2, des avancées scientifiques importantes ont été obtenues dans trois domaines:

En Neuroscience : identification de nouvelles activités mentales liées aux processus attentionnels.

Dans le premier volet d’OpenViBE, l’équipe Inserm « Dynamique Cérébrale et Cognition (Dycog) » du Centre de recherche en neurosciences de Lyon (Inserm/CNRS) avait participé au développement du logiciel capable d’ « écrire par la pensée », facilitant la communication des personnes handicapées motrices. OpenViBE2 offre de nouvelles avancées dans le domaine des neurosciences qui permettent d’utiliser les interfaces cerveau-ordinateur à des fins thérapeutiques pour améliorer certains déficits neurologiques comme les troubles de l’attention.

Grâce au dispositif, les chercheurs ont pu analyser:
– l’attention portée vers le monde extérieur en mesurant en temps réel et de manière sélective le niveau d’engagement du réseau cérébral chargé de rechercher une information précise dans une scène visuelle.
– l’attention accordée par l’utilisateur à une représentation interne, c’est-à-dire le niveau d’engagement du réseau cérébral chargé de maintenir une représentation mentale.
– Le niveau de distraction d’une personne en déterminant en temps réel à quel moment une personne est distraite, et pendant combien de temps.

Le principe de la réalité virtuelle, utilisé notamment dans le serious game ADHD développé grâce à OpenViBE2, a permis aux chercheurs d’obtenir des résultats sur les déficits attentionnels. L’environnement virtuel ressemble à l’environnement réel et l’utilisateur doit se concentrer pour réaliser une tache qu’il connait dans la réalité. Cet entrainement virtuel fait appel au processus de NeuroFeedback où l’utilisateur est amené à autoréguler son activité cérébrale.

« Associé à la réalité augmentée, le serious game a un effet rééducateur positif qui perdure au-delà de la séance d’entrainement dans l’environnement réel », souligne Jean Philippe Lachaux, directeur de recherche à l’Inserm.

Des progrès sont néanmoins nécessaires dans le dispositif pour qu’il puisse être accessible à chacun.

Dans le traitement des signaux

Les chercheurs du CEA et du GIPSA-Lab ont trouvé de nouvelles techniques pour mieux filtrer et interpréter les signaux électriques du cerveau. Celles-ci permettent notamment d’éliminer les bruits parasites (notamment liés aux activités
musculaires : muscles faciaux, clignements des yeux, serrements de mâchoire), et d’extraire l’activité cérébrale pertinente de manière plus précise et plus focalisée. Ces techniques sont très utiles dans le contexte du jeu, où les joueurs peuvent être très mobiles.

En réalité virtuelle et interaction homme-machine

OpenViBE2 a permis aux chercheurs d’Inria d’inventer de nouveaux concepts pour interagir avec des jeux vidéo de manière plus originale et efficace, et de proposer plusieurs premières mondiales :
– Interface cerveau-ordinateur « multi-joueurs » : Les chercheurs de l’Inria ont conçu la toute première application ludique collaborative ou compétitive dans laquelle les activités cérébrales de deux joueurs sont analysées en même temps. Les deux joueurs peuvent jouer ensemble, ou l’un contre l’autre, dans un jeu vidéo de football simplifié.
– Intégration naturelle des ICO dans les mondes virtuels : les chercheurs ont étudié comment mieux intégrer les stimulations nécessaires à certaines interfaces cerveauordinateur basées sur des réponses cérébrales en intégrant les stimuli visuels directement dans le monde virtuel. Par exemple certaines ICO nécessitent des « flashs
visuels » reconnus dans le cerveau de l’utilisateur. Ceux-ci peuvent être intégrés dans le jeu vidéo par exemple sous la forme de papillons qui battent des ailes à différentes fréquences.
– Adaptation automatique du monde virtuel à l’état mental du joueur : Enfin, les chercheurs ont proposé des approches radicalement nouvelles où des éléments de l’environnement virtuel sont modifiés automatiquement en fonction de l’état mental. Dans un jeu de labyrinthe virtuel des guides sont ainsi automatiquement activés si l’utilisateur présente une charge mentale trop élevée. Ces travaux ont été primés au niveau international par plusieurs prix scientifiques (best paper award Eurohaptics 2012, BCI Award 2012 nominee).

  • La salle de jeu du futur

[break]Le projet OpenViBE2 a permis de développer de nombreuses preuves de concept académiques et des prototypes de jeu vidéo industriels tous pilotés par l’activité cérébrale. Les industriels du jeu vidéo ont travaillé directement avec des laboratoires académiques de l’Inria, de l’Inserm, du CEA et GIPSA-Lab, pour mettre au point des jeux vidéo basés sur l’activité cérébrale. Cette collaboration a permis de mieux spécifier les actions de recherche scientifique tout au long du
projet et de converger vers des solutions plus adaptées aux contraintes technologiques du domaine d’application.
Au cours du projet, les partenaires ont mis en place une vaste campagne d’expérimentations sur « les interfaces cerveau-ordinateur et les jeux vidéo » menée à la Cité des Sciences par CHART durant laquelle près de 400 testeurs ont pu tester les prototypes. Les résultats de ces expérimentations ont permis de mettre en avant l’attractivité de ces technologies pour un large public, et de fournir au consortium de partenaires de très nombreux retours d’expérience d’utilisateurs. Un projet de standardisation a par ailleurs été piloté par UBISOFT pour définir le casque « idéal » afin
de mieux correspondre au marché du jeu vidéo.

Exemples de preuves de concept développés par les laboratoires académiques:

MindShooter (Inria) : Dans ce jeu, l’utilisateur contrôle un vaisseau spatial représenté en bas de l’écran et doit détruire des vaisseaux ennemis situés en haut de l’écran. Il dispose de trois commandes : aller à droite, aller à gauche, et tirer. Pour les activer, il doit se concentrer sur la zone du vaisseau correspondant à l’action qu’il souhaite déclencher.

Brain Invaders (GIPSA-LAb): Ce jeu est inspiré du jeu japonais « Space Invaders ». Il faut également détruire les vaisseaux situés à l’écran grâce à une réponse cérébrale qui se produit dès qu’un évènement rare et attendu surgit.

Brain Arena (Inria) : Ce jeu « multi-joueurs » de football simplifié permet à deux utilisateurs de jouer ensemble ou l’un contre l’autre avec leur activité cérébrale.

Trois prototypes industriels de jeux vidéo basés sur l’activité cérébrale ont également été développés par le consortium:

Cocoto Brain (Kylotonn Games) : Un « Casual game » basé sur l’activité cérébrale, Entertainment pour la console Wii de Nintendo. Le joueur doit protéger une fée en empêchant tous les ennemis de s’approcher d’elle. Le joueur doit se concentrer sur les cibles situées au-dessus des ennemis pour les neutraliser.

BCI Training Center (Black Sheep Studio), un jeu de type « entraînement cérébral » utilisant l’EEG développé par Black Sheep Studio. Le jeu permet au joueur de pratiquer des activités ludiques d’entraînement cérébral (recherche visuel, trouver un mot dans une grille) associées à une adaptation du jeu en temps-réel en fonction de son état mental mesuré par le dispositif EEG (relaxation et concentration).

Un serious game pour le traitement des déficits attentionnels (CLARTE) : un prototype est destiné aux enfants atteints de troubles de déficit de l’attention/hyperactivité (TDAH) a été développé par CLARTE. L’environnement virtuel de cette plateforme est une salle de classe dans laquelle l’enfant TDAH est par exemple invité à regarder une vidéo sur un écran dans la classe, dont la qualité perçue est directement liée à son activité cérébrale. Ainsi, s’il souhaite continuer à regarder cette vidéo dans de bonnes conditions, il doit maintenir son activité dans les conditions indiquées par le thérapeute. Plusieurs mini-jeux sont également proposés pour améliorer ses capacités attentionnelles en exploitant l’EEG.

©Lachaux/Inserm

En conclusion, le projet OpenViBE2 a permis d’acquérir une expertise scientifique et un savoir-faire technologique unique au monde sur l’utilisation de cette technologie très prometteuse dans un marché porteur. Des avancées  scientifiques importantes ont été obtenues dans de multiples domaines tels que les neurosciences, le traitement des signaux électriques cérébraux, ou les interfaces homme-machine et la réalité virtuelle. Des prototypes ont permis d’illustrer les nombreux résultats scientifiques du projet dans des cadres industriels concrets.
Les résultats du projet sont capitalisés sous la forme de savoir-faire, de méthodes et de logiciels tels que le logiciel libre OpenViBE, qui doivent permettre de mieux maîtriser à l’avenir l’arrivée sur le marché du grand public de ces technologies ICO. Des discussions sont notamment en cours actuellement pour la commercialisation des prototypes dans un avenir proche avec la start-up française MENSIA TECHNOLOGIES.

Plus de 50 articles scientifiques dans des conférences ou des revues de référence.

Voir les photos sur Sérimedis, la banque d’images de l’Inserm

Comment des souris subissant des agressions répétées développent une aversion sociale

L’un des mécanismes impliqués dans l’apparition de la dépression causée par le stress vient d’être révélé chez la souris par des chercheurs du CNRS, de l’Inserm et de l’UPMC[1]. Ils ont déterminé le rôle du récepteur de la corticostérone, l’hormone du stress, dans la modification à long terme des comportements induits par un stress chronique. Chez des souris subissant des agressions répétées, ce récepteur participe à la mise en place d’une aversion sociale en contrôlant la libération de dopamine[2], un messager chimique clef. Si ce récepteur est bloqué, les animaux deviennent « résilients » : bien qu’anxieux, ils surmontent le traumatisme et ne fuient plus le contact avec leurs congénères. Ces travaux sont publiés dans Science le 18 janvier 2013.

Chez les vertébrés, le stress déclenche une libération rapide d’hormones glucocorticoïdes, la corticostérone chez les rongeurs ou le cortisol chez l’homme. Cette hormone modifie l’expression de nombreux gènes de façon à ce que l’individu puisse répondre au mieux à la cause du stress. Cependant, un stress chronique ou excessif peut conduire à la dépression, à l’anxiété et à des troubles du comportement social. Comprendre les mécanismes impliqués est un enjeu important pour le traitement des maladies psychiatriques liées au stress.

Les chercheurs soupçonnaient déjà que l’apparition de symptômes dépressifs causés par le stress mettait en jeu aussi bien l’hormone du stress que les neurones à dopamine libérant ce neurotransmetteur central dans le contrôle de l’humeur. Pour mieux comprendre cette imbrication, les chercheurs ont soumis un groupe de souris à des attaques répétées par des congénères plus forts et agressifs.

Résultat : au bout d’une dizaine de jours, les souris présentaient des signes d’anxiété et une forte aversion sociale. En effet, devant un congénère nouveau, les souris agressées préféraient éviter tout contact. Cette aversion sociale est considérée comme un marqueur de la dépression.

Les chercheurs ont reproduit l’expérience, mais cette fois-ci avec diverses lignées de souris chez lesquelles le récepteur de la corticostérone était absent dans certaines populations de neurones. Ils ont ainsi découvert que les souris dépourvues de ce récepteur dans les neurones sensibles à la dopamine, ne développaient pas d’aversion sociale. Bien qu’anxieuses suite aux attaques répétées, elles ne fuyaient pas pour autant le contact avec leurs congénères. Ces rongeurs étaient donc plus « résilients », c’est-à-dire plus résistants au stress, que les souris « sauvages ».

En réponse à une agression, on observe toujours une libération de dopamine. Or, les scientifiques ont remarqué que, chez les souris dépourvues du récepteur de la corticostérone dans les neurones sensibles à la dopamine, cette libération était fortement diminuée. Chez une souris normale, les neurones sensibles à la dopamine contrôlent donc, par un mécanisme de feed back, la libération de ce neurotransmetteur. Pour montrer que cette libération de dopamine cause le développement de l’aversion sociale, les chercheurs ont bloqué l’activité des neurones producteurs de dopamine. Résultat : chez les souris agressées, l’intérêt pour leurs congénères était restauré. L’activité dopaminergique est donc cruciale pour l’apparition d’une aversion sociale.

crédit P Latron/Inserm

Cette étude montre le rôle important de l’hormone de stress dans l’apparition d’une aversion sociale induite par des traumatismes répétés. Plus généralement, elle dévoile en partie les mécanismes neurobiologiques et la cascade de réactions qui sous-tendent l’apparition de dépression. Ces résultats pourraient mener à de nouvelles pistes thérapeutiques pour traiter la dépression en révélant des cibles alternatives pour des médicaments, notamment au niveau du système dopaminergique.


[1] Plus précisément, ces travaux ont été effectués par une équipe du laboratoire « Physiopathologie des maladies du système nerveux central » (CNRS/Inserm/UPMC), en collaboration avec le laboratoire « Neurobiologie des processus adaptatifs » (CNRS/UPMC).

[2] La dopamine est un neurotransmetteur, c’est-à-dire une molécule qui module l’activité des neurones dans le cerveau.

fermer