Menu
Communiqués et dossiers de presse

Des neurones en ébullition pendant le sommeil

27 Juin 2019 | Par Inserm (Salle de presse) | Neurosciences, sciences cognitives, neurologie, psychiatrie

Adobe Stock

Une équipe Inserm décrit pour la première fois le comportement et le langage des neurones qui assurent la consolidation de la mémoire pendant le sommeil. Bien loin de l’organisation statique et linéaire supposée, les chercheurs de l’Inserm montrent que le rôle des neurones varie rapidement au cours du temps et que le trajet de l’information change en permanence. Ces travaux sont parus dans Science Advances.

Les cellules du cerveau échangent constamment des informations. Pendant le sommeil, cela sert notamment à consolider la mémoire. Mais la façon dont ces échanges se font reste encore mal connue. L’électroencéphalogramme, qui permet de mesurer l’activité électrique globale du cerveau, montre des ondes régulières plus ou moins rapides selon les phases de sommeil, mais il ne permet pas de savoir comment est traitée l’information à l’échelle du neurone. Voilà qui est fait grâce à l’équipe de Christophe Bernard (Institut de Neuroscience des Systèmes – Inserm U1106). Pour y parvenir, l’équipe a utilisé des électrodes afin d’enregistrer l’activité électrique d’une centaine de neurones concentrés dans une région donnée. Ce sont ces signaux électriques qui portent l’information. Trois zones connues pour être impliquées dans la mémoire ont été enregistrées chez des rats pendant leur sommeil : l’hippocampe, le cortex préfrontal et le cortex entorhinal.

« D’après la régularité des ondes dans l’encéphalogramme, nous imaginions que les neurones fonctionnaient selon un schéma bien précis et répétitif pour transmettre les informations ou les stocker (un peu à la manière d’une machine industrielle bien réglée). Or les enregistrements montrent qu’il n’en est rien », clarifie Christophe Bernard.

Des groupes de neurones s’organisent entre eux pendant des temps très courts pour stocker et transmettre de l’information, et se relaient en permanence au cours du temps. Et au sein de chaque groupe, seuls quelques neurones jouent un rôle prépondérant. « Il y a ainsi une succession de sous-états avec au final, environ la moitié des neurones de ces trois régions qui jouent un rôle clé dans le traitement de l’information à un moment ou à un autre. Autrement dit, il n’y a pas de hiérarchie établie au sein des neurones, mais plutôt une répartition équilibrée des rôles », explique Christophe Bernard.

Une circulation fluide

L’autre découverte majeure est que, pendant un sous-état donné, l’information ne suit pas toujours le même chemin. « Ce fut une surprise car la théorie dominante était que le transfert de l’information suivait un trajet fixe. Or, nous constatons que ce n’est pas le cas. Dans le cerveau, les partenaires avec lesquels un neurone échange fluctuent d’un instant à l’autre. Cela se passe un peu comme sur internet, illustre le chercheur.

Un mail qui part de Paris vers Sydney, passera par des serveurs situés dans différents pays au cours de son acheminement et ces serveurs varieront au cours de la journée en fonction du trafic. Dans le cerveau c’est pareil : même quand l’information est la même, les itinéraires qu’elle emprunte ne sont pas fixes et les partenaires changent sans arrêt ».

Enfin, ces travaux ont permis de décoder le type de langage que les neurones parlent. Si un sous-état correspond à un « mot », la séquence de sous-états constitue une phrase. Même si la signification des mots et des phrases échappe encore aux chercheurs, ces derniers ont pu établir que le langage parlé par les neurones est complexe, ce qui permet d’optimiser le traitement de l’information. Un langage simple contient très peu de mots ; il est facile à apprendre mais il est difficile de convoyer des notions complexes. Un langage chaotique contient un mot pour chaque situation possible, et est impossible à apprendre. Le langage des neurones est complexe, comme pour les langues humaines. A noter que cette complexité est supérieure lors du sommeil paradoxal (celui des rêves) que pendant le sommeil lent.

Les chercheurs vont maintenant regarder ce qu’il en est en cas d’éveil, de réalisation de taches particulières ou encore en cas de pathologies. Ils vont notamment étudier le lien possible entre les pertes mnésiques chez les sujets épileptiques et la complexité du langage neuronal.

Contacts
Contact Chercheur

Christophe Bernard

Directeur de recherche Inserm

INS - Institut de Neurosciences des Systèmes UMR Inserm 1106, Aix-Marseille Université

Email : puevfgbcur.oreaneq@havi-nzh.se

Tel : 04 91 32 42 49

06 18 04 49 13

Institut de Neurosciences des Systèmes - Université Aix-Marseille

https://ins.univ-amu.fr/

Contact Presse

cerffr@vafrez.se

Sources

Computing hubs in the hippocampus and cortex

Wesley Clawson1, Ana F. Vicente1, Maëva Ferraris1, Christophe Bernard1,#, Demian Battaglia1,#,*,Pascale P Quilichini1,#,*

1 Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France

Science Advances

fermer