Category Archives: Cell biology, development and evolution

A crucial enzyme finally revealed

After 40 years of research, researchers at the CEA, the CNRS, the University of Grenoble-Alps, the University of Montpellier and the Inserm have finally identified the enzyme responsible for the tubulin cycle. Surprisingly, it is not one enzyme but two which control the cycle of this essential component of the cytoskeletal structure. This work opens up new prospects for the improved understanding of the role of tubulin, changes in the cycle of which are associated with cancers, cardiac diseases and neural disorders. These results were published on 16th November 2017 in the review Science.

Gene therapy: first results in children with Sanfilippo B syndrome

On July 13, 2017, the journal Lancet Neurology published the results of a gene therapy trial conducted in four children with Sanfilippo type B syndrome (also known as MPS IIIB). This trial is the achievement of a two-decade partnership with financial support of AFM-Téléthon and the cooperation of the charity “Vaincre les Maladies Lysosomales” (VML). After monitoring of the treated children for 30 months, Dr. Jean-Michel Heard, from the Institut Pasteur and Inserm, and Professors Marc Tardieu and Michel Zérah, from the Paris public hospital administration (AP-HP) and the Paris-Sud and Paris Descartes Universities, conclude that the treatment was well tolerated and associated with neurocognitive benefits for the patients.

Discovery of a new mechanism involved in the migration of cancer cells

Une équipe de jeunes chercheurs dirigée par Guillaume Montagnac, chargé de recherche Inserm à Gustave Roussy, en collaboration avec l’Institut Curie et l’Institut de Myologie, a découvert un nouveau mécanisme qui aide les cellules à migrer. La cellule forme à la surface de sa membrane de multiples petites pinces qui l’aident à s’accrocher pour mieux progresser le long des fibres présentes à l’extérieur de la cellule. Ce mécanisme permet de mieux comprendre comment une cellule s’échappe de la masse tumorale et se déplace dans le corps pour aller former un nouveau foyer.

Neuronal Self-Defense Against Alzheimer’s Disease

It is known that IGF-1 (insulin-like growth factor) is needed for development and also plays a role throughout the body’s life. Previously, the team led by Martin Holzenberger (Inserm/UPMC Unit 938, Saint-Antoine Research Center) has shown that this hormone is involved in longevity and in Alzheimer’s disease. The team has recently conducted further research on IGF-1 and the response of neurons to this kind of neurodegeneration. These new results have been published in Brain.

We’re all a bit Neanderthal… or are we?

A study conducted by Inserm researchers at the Research Institute for Environmental and Occupational Health (Irset)[1] has shown that natural selection has “purged” our bodies of many of the traces of our ancient Neanderthal and Denisovan cousins in the genes responsible for the genetic mixing essential to reproduction. The researchers have shown that the genes expressed during meiosis in the cells that produce gametes (reproductive cells) are strongly deficient in genetic variations of Neanderthal origin that were the result of the interbreeding between Homo sapiens and Homo neanderthalensis. These results have been published in Molecular Biology and Evolution.

Communication between neurons implicated in autism spectrum disorders and intellectual disabilities

An international collaborative study coordinated by Frédéric Laumonnier (Unit 930 “Imaging and Brain” Inserm/University of Tours) and Yann Hérault of the Institute of Genetics and Molecular and Cellular Biology (Inserm/ CNRS/ University of Strasbourg) provides new and original findings on the pathophysiological role of the contact areas between neurons in certain brain disorders. The study reveals that mutation of one of the genes involved in intellectual disability and autism spectrum disorder leads to dysfunction of the synapses, which are essential for neuronal communication.

A warning on taking ibuprofen during pregnancy

A new study conducted by Inserm researchers at Irset (Institute of Research in Environmental and Occupational Health)[1] shows that ibuprofen is liable to cause disruptions in the hormone system in the human foetal testis, with possible implications for the development of the male urogenital tract. This drug suppresses the production of various testicular hormones, including testosterone, which controls the primary and secondary sex characteristics and the descent of the testes. These effects are obtained at doses similar to the standard dosage. These results are published in Scientific Reports.

Breast cancer: identification of a molecular switch that controls cancer stem cells

Some cancer cells are resistant to treatment and persist. If they are capable of proliferating again, even a very small number of these cells may be enough to reconstitute a tumour after or despite treatment. Various approaches to eliminate these “cancer stem cells” (CSCs) have been tried in recent years: targeted therapies, vaccination and tumour starvation. In an article published in the journal Cell Reports, Christophe Ginestier, Inserm Research Fellow at the Cancer Research Center of Marseille (CRCM, Aix-Marseille University/CNRS/Institut Paoli-Calmettes), and his collaborators identify a specific RNA[1] molecule that plays the role of a molecular switch that can “turn off” or “turn on” CSC proliferation in breast cancers.

Eating well to grow well: discovery of a missing link

Rénald Delanoue, Inserm Researcher, and his colleagues at the Institute of Biology Valrose in Nice (Inserm-CNRS-Université Côte d’Azur) have identified the missing links in the process that regulates the size of an organism based on the richness of its diet. Their research was conducted on Drosophila, an insect that seems very distant from humans, but the study of which has nonetheless enabled many advances in biomedical research. This work is published in the 30 September 2016 issue of the journal Science.

The origin of heart dysfunctions in myotonic dystrophy identified

An international team, including researchers in France at Inserm, CNRS and the University of Strasbourg, brought together at IGBMC[1] is lifting the veil on the molecular mechanisms causing heart dysfunctions in myotonic dystrophy, a genetic disease affecting one person in 8,000. This new study, published this week in Nature Communications, could contribute to discovering a treatment.

RSS Youtube