© Olivier Cabaud
A procedure that may help personalise anticancer therapies has just been developed by the CNRS, Inserm, and Aix-Marseille University scientists at the Centre d’Immunologie de Marseille-Luminy, in association with colleagues from the University of California San Francisco and the Marseille Public University Hospital System (AP-HM), with support from Canceropôle Provence–Alpes–Côte d’Azur. Their patented technique1 reveals the energy status of cells, an indicator of their activity. It is presented in Cell Metabolism (1 December 2020).
Immunotherapies are a promising anticancer arsenal and work by mobilizing the immune system to recognize and destroy cancer cells.2 Currently, however, only a third of patients respond to immunotherapies: the tumour environment can be hostile to immune cells, depriving them of their source of energy, which diminishes treatment efficacy. The energy status of the various types of immune cells is a marker of their activity, and particularly of their pro- or antitumour action. To boost the effectiveness of immunotherapies, it is thus essential to have a simple method for characterising the energy profiles of immune cells from tumour samples.
The scientists behind SCENITH have already begun working with clinical research teams to better understand how it might be used to predict patient treatment response.4 They seek further collaborations of this kind to determine profiles associated with different responses to immuno- and chemotherapy. SCENITH seeks to enable personalised treatment for each patient that exploits the strengths of the immune response and the weaknesses of the tumour.
Find out more:
SCENITH: A flow cytometry based method for functional profiling energy metabolism with single cell resolution
Rafael J. Argüello, Alexis J. Combes, Remy Char, Julien-Paul Gigan, Ania I. Baaziz, Evens Bousiquot, Voahirana Camosseto, Bushra Samad, Jessica Tsui, Peter Yan, Sebastien Boissonneau, Dominique Figarella-Branger, Evelina Gatti, Emeline Tabouret, Matthew F. Krummel et Philippe Pierre
Cell Metabolism, 1er décembre 2020