Transformation des cellules mammaires tumorales dans le cancer du sein. Crédits / Inserm – Xavier Coumoul
Des travaux décrivent le rôle épigénétique[1] d’un ARN non-codant dans le développement de tumeurs agressives, notamment dans le cancer du sein. L’étude, menée en collaboration entre l’Institut Curie, l’Inserm, le CNRS, l’Institut Paoli Calmettes, Aix-Marseille Université[2], vient d’être publiée dans la revue Cell. Ces résultats pourraient expliquer plus largement des biais de genre dans la prédisposition à certaines pathologies.
Tous les mammifères disposent de deux chromosomes sexuels. Les mammifères femelles possèdent deux chromosomes X, contrairement aux mâles qui ont un chromosome X et un Y. On connaissait déjà le rôle d’un ARN non-codant spécifique, appelé XIST, pour initier l’inactivation d’un des deux chromosomes X de la femelle. Le but de cette inactivation : bloquer la double expression des gènes situés sur ce chromosome car celle-ci affecte la viabilité des cellules. Dans cette nouvelle étude, les scientifiques démontrent que XIST joue non seulement un rôle pour déclencher cette inactivation du chromosome X mais aussi pour la maintenir tout au long de la vie des cellules.
Pour parvenir à ce résultat, les chercheurs et chercheuses ont étudié in vivo les effets de la suppression de XIST. Plusieurs techniques ont été utilisées pour cela. « Soit on a utilisé des outils génétiques pour bloquer l’expression de XIST, soit on a utilisé des techniques de CRISPR[3] pour interférer avec l’expression et on a rendu le gène de XIST silencieux », explique Raphaël Margueron, chercheur à l’Inserm et chef de l’équipe « Mécanisme de répression par les protéines Polycomb » à l’Institut Curie dans l’unité « Génétique et biologie du développement » (Institut Curie/CNRS/Inserm/Sorbonne Université).
La perte de XIST dans les lignées cellulaires étudiées[4] a un effet important sur l’homéostasie[5] du tissu mammaire et impacte le développement tumoral. Raphaël Margueron précise que « quand on étudie des tumeurs et qu’on regarde après coup quelles étaient les propriétés de ces tumeurs, on voit qu’il y a une tendance à ce que XIST soit absent des tumeurs du sein les plus agressives. Ainsi qu’une réactivation d’un certain nombre de gènes du X inactif ».
Parmi les gènes réactivés par la perte de XIST, les chercheurs ont mis en évidence le gène codant pour MED14, une sous-unité essentielle au sein du complexe protéique Médiator. Celui-ci joue un rôle dans le contrôle de l’expression des gènes.
En conséquence, une augmentation de l’expression de MED14 va impacter l’activité de Médiator et contribuer à la perturbation de la différenciation des cellules souches mammaires[6]. Il s’agit potentiellement du résultat d’une augmentation de l’activation des enhancers (voir FOCUS ci-dessous).
En conclusion, la perte de XIST entraîne la réactivation de certains gènes (sur le chromosome X inactif) impliqués dans la différentiation des cellules et impacte le développement de cellules tumorales agressives. Ce mécanisme épigénétique étant spécifique à la présence de deux chromosomes X, ces résultats vont jouer un rôle majeur dans l’étude des prédispositions aux pathologies liées au genre de l’individu.
« Cette étude suggère que l’expression de XIST ainsi que de certains gènes liés au chromosome X pourraient être utilisés comme marqueurs de réponse à de nouvelles stratégies thérapeutiques », développe Christophe Ginestier, chef de l’équipe Inserm « Cellules Souches Epithéliales et Cancer » au Centre de recherche en cancérologie de Marseille.
Focus : Initiation de la transcription
« L’expression des gènes est contrôlée par les promoteurs mais aussi par des morceaux d’ADN, qui peuvent être assez distants du gène et du promoteur, qu’on appelle les enhancers. Il y a une communication entre les enhancers et les promoteurs. Le complexe Médiator intervient dans cette communication et permet aux enhancers de réguler finement l’expression des gènes. », explique Raphaël Margueron.
[1] L’épigénétique est une discipline qui étudie les mécanismes intervenant dans la régulation des gènes, essentielle à l’action des cellules et au maintien de leur identité.
[2] Les travaux ont été menés dans l’unité de recherche « Génétique et biologie du développement » (Institut Curie, CNRS, Inserm, Sorbonne Université) par l’équipe « Mécanisme de répression par les protéines Polycomb » de Raphaël Margueron ; au Centre de Recherche en Cancérologie de Marseille (CRCM / Inserm, CNRS, Aix-Marseille Université, Centre de Lutte Contre le Cancer de la région PACA-Institut Paoli-Calmettes) par l’équipe d’Emmanuelle Charaffe-Jauffret et de Christophe Ginestier et avec l’EMBL à Heidelberg (Edith Heard).
[3] La technique CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) consiste à interrompre ou suspendre l’expression d’un gène en le ciblant de manière précise.
[4] Le tissu mammaire contient des canaux composés de cellules basales et luminales. Les lignées cellulaires choisies permettent de reproduire cette hétérogénéité du tissu.
[5] Maintien de l’équilibre entre le milieu intérieur et extérieur.
[6] La différenciation est la capacité d’une cellule à acquérir une fonction propre. Une cellule souche peut devenir n’importe quelle cellule (musculaire, excrétrice, osseuse, etc.) mais c’est sa localisation (donc son environnement et les facteurs de transcription qu’on y trouve) qui va déterminer son devenir.
Cancer Voir toutGenetics, genomics and bioinformatics Voir tout