Menu
Communiqués et dossiers de presse

Horloge biologique : à chaque organe, son rythme

08 Fév 2018 | Par INSERM (Salle de presse) | Neurosciences, sciences cognitives, neurologie, psychiatrie

©Adobe Stock

Une équipe de chercheurs de l’Inserm dirigée par Howard Cooper (Unité Inserm 1208  » Institut cellule souche et cerveau ») en collaboration avec des collègues américains fournit pour la première fois une cartographie inédite de l’expression des gènes, organe par organe, et selon le moment de la journée ; un travail colossal commencé il y a dix ans et qui a nécessité deux ans d’analyse. Ces résultats publiés dans Science montrent combien il est important de tenir compte de l’horloge biologique pour administrer les médicaments au bon moment afin d’améliorer leur efficacité et d’en réduire les effets indésirables. Les chercheurs préparent désormais un atlas qui sera disponible pour l’ensemble de la communauté.

Environ deux tiers des gènes codant pour des protéines sont exprimés de façon cyclique au cours des 24 heures avec des pics en matinée et en début de soirée. Néanmoins, cette expression varie beaucoup d’un tissu à l’autre confirmant que, en plus de l’horloge centrale interne, chaque organe exprime sa propre horloge. Une équipe Inserm le prouve pour la première fois chez une espèce diurne et fournit une cartographie spatio-temporelle inédite de l’expression circadienne des gènes pour l’ensemble des organes. Ces travaux marquent une avancée majeure dans le domaine de la chronobiologie.

Jusque-là, les études destinées à explorer le rythme circadien dans les différents organes étaient menées principalement chez des animaux modèles comme la drosophile (travaux récompensés l’année dernière par le prix Nobel) et les espèces nocturnes, en particulier la souris. L’horloge circadienne étant principalement synchronisée par le cycle de lumière jour-nuit, il aurait été tentant d’inverser le cycle pour obtenir des données chez les animaux diurnes. Mais les rongeurs ne sont pas seulement en décalage de phase par rapport à l’homme, ils ont aussi un mode de vie très différent : un sommeil fragmenté de jour comme de nuit contre un sommeil plus consolidé pendant la nuit pour les diurnes ou encore une alimentation permanente pendant la phase d’éveil nocturne alors que les hommes prennent  des repas répartis de façon régulière. Autant de facteurs qui contribuent également à la synchronisation de l’horloge biologique. Il était donc temps de travailler chez des espèces plus proches de l’homme pour en savoir plus chez ce dernier.

Pour cela, les chercheurs ont analysés les ARNs de plus de 25 000 gènes de 64 organes et tissus, toutes les deux heures et pendant vingt-quatre heures, chez des primates non humains. Les organes principaux ont été passés au crible ainsi que différentes régions du cerveau. Au total, les chercheurs ont analysé 768 prélèvements. Un travail colossal commencé il y a dix ans et qui a nécessité deux ans d’analyse ! Pour chacun d’entre eux, ils ont recherché, quantifié et identifié les ARN présents dans les cellules. Ces ARN deviennent ensuite des protéines ou restent à l’état d’ARN avec des propriétés régulatrices sur d’autres molécules. C’est ce qu’on appelle le transcriptome.

 

80% des gènes réglés sur l’horloge biologique assurent les fonctions essentielles des cellules

Les auteurs ont constaté que 80% des gènes exprimés de façon cyclique, codent pour des protéines assurant des fonctions essentielles de la vie des cellules comme l’élimination des déchets, la réplication et la réparation de l’ADN, le métabolisme, etc. Mais, il existe une très grande diversité des transcriptomes, c’est-à-dire de l’ensemble des ARN, présents dans les cellules des différents échantillons au cours des 24 heures.

Le nombre de gènes exprimés de façon cyclique varie en nombre (environ 3000 dans la thyroïde ou le cortex préfrontal contre seulement 200 dans la moelle osseuse) et en nature : moins de 1% des gènes « rythmiques » dans un tissu le sont également dans les autres tissus. 

Même les treize gènes connus de l’horloge biologique, que les auteurs s’attendaient à retrouver de façon cyclique dans tous les échantillons, n’y sont finalement pas tous présents, pas dans les mêmes quantités ou pas au même moment. Les seuls points communs entre ces 64 tissus sont finalement les pics bien définis d’expression des gènes au cours de la journée : en fin de matinée et en début de soirée. Le premier, le plus important, survient entre 6 et 8 heures après le réveil avec plus de 11.000 gènes exprimés à ce moment-là dans l’organisme. Et le second moins intense voit environ 5000 gènes en action dans les tissus. Puis, les cellules sont quasiment au repos au cours de la nuit, particulièrement lors de la première partie de la nuit.

Ces résultats ont surpris les auteurs par l’ampleur de la rythmicité des organes du primate non humain et des applications possibles.  » Deux tiers des gènes codants fortement rythmés, c’est beaucoup plus que ce à quoi nous nous attendions » clarifie Howard Cooper, directeur de recherche Inserm au sein de l’équipe « Chronobiologie et Désordres Affectifs » de l’Unité Inserm 1208. « Mais surtout, 82% d’entre eux codent des protéines ciblées par des médicaments ou sont des cibles thérapeutiques pour de futurs traitements. Cela prouve combien il est important de tenir compte de l’horloge biologique pour administrer les médicaments au bon moment de la journée afin d’améliorer l’efficacité et de réduire les effets indésirables. Quelques experts travaillent sur ces questions, notamment dans le domaine du cancer, mais il faut à mon avis aller beaucoup plus loin. C’est pourquoi nous préparons un véritable atlas, sous forme de base de données consultable, pour permettre aux scientifiques du monde entier de connaitre enfin le profil d’expression de chaque gène dans les différents organes au cours de 24 heures « , précise le chercheur

Contacts
Contact Chercheur
Howard Cooper Directeur de recherche Inserm Unité Inserm 1208 "Institut cellule souche et cerveau" Équipe " Chronobiology & Affective Disorders" Tel: 06.03.21.24.06 Email:  rf.mresni@repooc.drawoh
Sources
Diurnal transcriptome atlas of a primate across major neural and peripheral tissues Ludovic S. Mure1, Hiep D. Le1, Giorgia Benegiamo1, Max W. Chang1,2, Luis Rios1, Ngalla Jillani3, Ngotha Maini3, Thomas Kariuki3, Ouria Dkhissi-Benyahya4, Howard M. Cooper4,#, Satchidananda Panda1,#
  1. Regulatory Biology Laboratory, Salk institute for Biological studies, 10010, N. Torrey Pines road, La Jolla,CA 92037
  2. Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093.
  3. Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
  4. Univ Lyon, Universite Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
Science
fermer