An antioxidant protein to fight changes to the intestinal microbiota and control inflammation

Teams from Hôpital Paul-Brousse AP-HP, Inserm and Paris-Sud University have recently evidenced a mechanism which modulates the intestinal microbiota, involving a molecule with antioxidant and anti-inflammatory properties, known as REG3A. The latter is thought to protect the intestinal barrier and the bacteria most sensitive to oxygen forming the microbiota, thus improving "good" bacterial survival and growth. Transplantation of fecal microbiota in mice models of severe colitis or administration of a REG3A recombinant protein to wild type mice evidences a marked reduction in their susceptibility to the disease. These results have been published in the journal *Gastroenterology* and represent a new approach to manipulation of the intestinal microbiota for therapeutic purposes, restoration of host-microbiota symbiosis, and alleviation of intestinal inflammation.

One of the key factors for an imbalanced microbiota composition or "dysbiosis" is intestinal oxidative stress. Combined with immune responses, this is capable of amplifying the production of free radicals, activation of inflammatory cells (macrophages), imbalances of microbiota composition in favor of aerotolerant bacteria, and lesions in the intestinal barrier.

Dr. Jamila Faivre from the Department of Oncology-Hematology at Hôpital Paul-Brousse, AP-HP, and her team from Unit 1193 "Physiopathogenesis and Treatment of Liver Disease" at the Hepatobiliary Center (Inserm/Paris-Sud University) are studying oxidative stress as a therapeutic target to prevent or treat diseases and/or disorders related to dysbiosis.

In this study, the researchers show that a recombinant human protein known as REG3A is capable of modifying the intestinal microbiota by reducing the levels of free radicals. This regulatory mechanism is based on the antioxidant activity of this molecule.

REG3A protects commensal gut bacteria from oxidative stress by trapping free radicals and improving the survival and growth of "good" gut bacteria known to be highly sensitive to oxygen.

In keeping with the data obtained from *in vitro* bacterial cultures, the molecule delivered into the gastrointestinal lumen of transgenic mice modifies intestinal microbiota composition with the over-representation of Gram-positive symbionts, such as Clostridiales, and improves barrier function and resistance of the mice in two models of severe experimental colitis.

With further investigation, the researchers observed that transplantation of fecal microbiota originating from transgenic mice strongly expressing REG3A protects conventional wild type mice, together with germ-free mice colonized with induced severe colitis. Furthermore, intrarectal administration of REG3A recombinant human protein to wild type mice significantly reduces their susceptibility to induced colitis.
These results suggest that biological therapy based on administration of REG3A recombinant protein is a novel approach to (re)modeling the intestinal microbiota, alleviating intestinal inflammation, and, indeed, to preventing colorectal cancer.

Compared to current strategies, this approach is innovative in two respects: using a human protein produced endogenously in the intestine, and increasing the proportion of gut bacteria with anti-inflammatory potential by raising the intraluminal concentration of REG3A to preserve host-microbiota symbiosis and thus fight intestinal, or, indeed, extra-intestinal inflammation more effectively.

Source:

Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis.

Darnaud M1, Santos AD1, Gonzalez P1, Augui S1, Lacoste C1, Desterke C2, De Hertogh G3, Valentino E1, Braun E1, Zheng J4, Boisgard R4, Neut C5, Dubuquoy L5, Chiappini F1, Samuel D1, Lepage P6, Guerrieri F7, Doré J6, Bréchot C8, Moniaux N1, Faivre J9.

1 INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France; Univ. Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France.
2 Univ. Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France.
3 Department of Imaging and Pathology, Unit of Translational Cell and Tissue Research, University of Leuven, 3000 Leuven, Belgium.
4 CEA, DSV, Institut d’Imagerie Biomédicale, Orsay 91400, France; INSERM, U1023, Université Paris Sud, Orsay 91400, France.
5 LIRIC-U995, Univ. Lille, Inserm, CHU Lille, Lille, France.
6 Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas 78352, France.
7 Center for Life NanoScience®@Sapienza, Istituto Italiano di Tecnologia, Roma 00197, Italy.
8 INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France; Univ. Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Pasteur Institute, Paris, France.
9 INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France; Univ. Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France.

http://dx.doi.org/10.1053/j.gastro.2017.11.003

About AP-HP: AP-HP is a world-renowned university hospital system and major clinical research player in France and Europe. Its 39 hospitals receive 10 million patients every year for consultations, emergency treatment, scheduled admissions and in-home health care. It provides a round-the-clock public health service for all, which for AP-HP is a matter of both duty and pride. With its 95,000 members of staff – doctors, researchers, allied medical staff, administrative staff and other employees, AP-HP is the leading employer in Île-de-France. http://www.aphp.fr

About Inserm: Created in 1964, the French National Institute of Health and Medical Research (INSERM) is a public scientific and technological institution, placed under dual supervision of the French Ministry of National Education, Higher Education and Research and the French Ministry of Health and Social Affairs. Inserm is the only French public body dedicated to research in the field of biology, medicine, and human health, with nearly 15,000 researchers, engineers, technicians, university hospital practitioners, doctoral students, and some 300 laboratories. Its researchers aim to study all diseases, from the most common to the rarest diseases. Inserm is a founder member of Aviesan*, the French National Alliance for Life Sciences and Health, created in 2009.

* Other founder members of Aviesan: CEA, CNRS, CHRU, CPU, INRA, INRIA, Inserm, Institut Pasteur, IRD

Access the press room Follow Inserm on Twitter: @Inserm On Facebook Linkedin
About Paris-Sud University
Paris-Sud University is a major stakeholder of Paris-Saclay University. Its multidisciplinary, scientific and health-focused excellence in research has been recognized by numerous international prizes, particularly in the field of mathematics (four Fields medals between 1994 and 2010) and physics (three Nobel prizes). Paris-Sud University is one of the most prestigious universities in Europe in terms of research, and ranks in the Top 50 of research universities worldwide. Paris-Sud University brings together 78 internationally renowned laboratories, and offers 30 technological platforms. Research is a highly integral part of its training courses, from undergraduate to doctoral level. Paris-Sud University is home to 31,000 students, including 2,400 doctoral students, and 5,000 foreign students, with 4,300 lecturers, researchers, and research professors, together with 3,100 engineering, technical, and administrative personnel.

Press contact:
AP-HP Press Office: Juliette Hardy & Marine Leroy - +33 1 40 27 37 22 - service.presse@aphp.fr