

November 8, 2018

Immunotherapy

A new pathway for modulating anti-tumoral immune response

Researchers from Inserm, CNRS, Paris-Sud University, Gustave Roussy, and Institut Curie have identified a new agent in regulating *PD-L1* gene expression: the *eIF4F* complex, which plays a role in controlling protein synthesis.

This complex could become a predictive marker for response to immunotherapy. Furthermore, the researchers demonstrate, for the first time, that inhibition of the *eIF4F* complex gives rise to an anti-tumoral effect related to decreased *PD-L1* expression, which therefore elicits immune system intervention.

The researchers hope that *eIF4F* inhibitors will be able to be used as anti-cancer agents in the future, alone or, more than likely, in combination with other treatments.

Just a few years ago, the immune system, our defense against disease, seemed unequipped to fight cancer. Advances in immunotherapy are making it possible to correct these shortcomings: the immune system can now learn to recognize and destroy cancer cells. Lymphocytes are thus rediscovering their initial ability to fight rather than protect tumors.

The *PD-1* (programmed cell death) molecule, expressed on the surface of T cells, binds to another molecule present on the surface of certain tumor or immune cells, *PD-L1*. This interaction in a way renders the tumor cell invisible to the immune system, by deactivating (or disarming) T cells.

In recent years, immunotherapy targeting the *PD-L1/PD-1* interaction has revolutionized the treatment of melanoma and other types of cancer.

However, many patients do not respond to treatment. These agents are highly effective for several months or years, but only in 10 to 20% of patients, for all types of cancer combined.

“The development of biomarkers is therefore a key issue in identifying patients liable to respond to treatment,” explains **Professor Caroline Robert, Head of the Dermatology Department at Gustave Roussy.**

*“A high *PD-L1* level in tumors is a major indicator since this is often associated with a good response to anti-*PD1* agents. However, the mechanisms for regulating *PD-L1* expression have not been fully elucidated,”* points out **Stephan Vagner, Inserm Research Director and Head of the RNA Biology Team at Institut Curie.**

In this latest publication, the researchers demonstrate, for the first time, that a complex known as *eIF4F*, involved in initiating the translation of messenger RNA into proteins, regulates *PD-L1* expression and that, by targeting *eIF4F* in tumor cells, anti-tumoral immunity can be stimulated, thus mimicking the effect of immunotherapy.

In this study, the researchers mainly used melanoma as a model, but also conducted tests with lung cancer, breast cancer, and colon cancer cells.

They will now go on to evaluate the findings of the study on the formation of the eIF4F complex, as a predictive marker for response to immunotherapy.

They are, moreover, developing other melanoma treatment models, based on the use of eIF4F complex inhibitors, in combination with other treatments, to increase therapeutic efficacy and fight resistance.

References

'Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma'

Nature Medicine DOI 10.1038/s41591-018-0217-1.

Michaël Cerezo ^{1,2,12}, Ramdane Guemiri ^{1,2,3,4,5,12}, Sabine Druilennec ^{5,6,7}, Isabelle Girault ^{1,2}, Hélène Malka-Mahieu ^{3,4,5}, Shensi Shen ^{1,2}, Delphine Allard ^{1,2}, Sylvain Martineau ^{3,4,5}, Caroline Welsch ^{1,2,3,4,5}, Sandrine Agoussi ^{1,2}, Charlène Estrada ^{5,6,7}, Julien Adam ^{1,8}, Cristina Libenciu ⁹, Emilie Routier ⁹, Séverine Roy ⁹, Laurent Désaubry ¹⁰, Alexander M. Eggermont ^{2,9}, Nahum Sonenberg ¹¹, Jean Yves Scoazec ⁸, Alain Eychène ^{5,6,7}, Stéphan Vagner ^{3,4,5,9,13*} and Caroline Robert ^{1,2,9,13*}

¹INSERM U981, Gustave Roussy, Villejuif, France

²Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France

³Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France

⁴Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France

⁵Equipe Labellisée Ligue Contre le Cancer, Paris, France

⁶Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France

⁷Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France

⁸Department of Pathology and Laboratory Medicine (BIOpath), Gustave Roussy, Université Paris-Saclay, Villejuif, France

⁹Oncology Department, Gustave Roussy, Université Paris-Saclay, Villejuif, France

¹⁰CNRS-Strasbourg University, UMR7200, Illkirch, France

¹¹Department of Biochemistry, McGill University, Montréal, Québec, Canada

¹²These authors contributed equally: Michaël Cerezo, Ramdane Guemiri.

¹³These authors jointly supervised this work: Stéphan Vagner, Caroline Robert

This study was supported by Inserm, CNRS, Gustave Roussy, and Institut Curie. It was also funded by the Ligue Nationale Contre le Cancer (accredited team), French National Cancer Institute, the 'Ensemble contre le mélanome' collective, and the 'Vaincre le Mélanome' association, SIRIC Socrate, Fondation Bettencourt Schueller, and Fondation ARC for Cancer Research.

Press contacts

Gustave Roussy: Claire Parisel +33 (0)1 42 11 50 59 claire.parisel@gustaveroussy.fr

Institut Curie: Catherine Goupillon +33 (0)1 56 24 55 23 service.presse@curie.fr

Research contacts

Caroline Robert +33 (0)1 42 11 42 10 caroline.robert@gustaveroussy.fr

Stephan Vagner +33 (0)1 69 86 31 03 stephan.vagner@curie.fr

About Gustave Roussy

Gustave Roussy, the leading cancer center in Europe, offers global expertise in the treatment of cancer, completely dedicated to patients. It brings together 3,100 professionals focusing on health care, research, and teaching – www.gustaveroussy.fr

About Institut Curie

Institut Curie, the gold standard in the fight against cancer, is an internationally renowned research center and a cutting-edge hospital specializing in the treatment of all types of cancer, including the rarest forms of the disease.

Founded by Marie Curie in 1909, Institut Curie brings together 3,500 researchers, physicians and nurses at 3 sites (Paris, Saint-Cloud, and Orsay), focusing on its 3 missions: treatment, research, and teaching. As a state-approved private foundation, authorized to receive donations and legacies, Institut Curie, thanks to its donors' support, can fast-track new discoveries, and thus improve treatment and patient quality of life.

Find out more: www.curie.fr

About CNRS

CNRS (French National Center for Scientific Research) is the main public research organization in France and Europe. It creates knowledge, and uses this knowledge to serve society. With 31,612 personnel, a 2017 budget of over 3.5 thousand million euros, including 787 million euros of its own resources, and sites spread throughout the country, CNRS operates in all areas of knowledge, supported by over 1,100 laboratories. CNRS has a long-standing tradition of excellence, with 21 Nobel Prize and 12 Fields Medal laureates. CNRS conducts research in all scientific, technological, and social fields: mathematics, physics, information and communication science and technology, nuclear and particle physics, earth and space sciences, chemistry, life sciences, human and social sciences, environment, and engineering. For more information: <http://www.cnrs.fr/>

About Paris-Sud University

Its multidisciplinary, scientific and health-focused excellence in research has been recognized by numerous international prizes, particularly in the field of mathematics (four Fields medals between 1994 and 2010) and physics (two Nobel Prizes). Paris-Sud University is one of the most prestigious universities in Europe in terms of research, and ranks in the Top 50 of research universities worldwide since 2012.

Paris-Sud University brings together 82 internationally renowned laboratories, and offers 30 technological platforms. Research is a highly integral part of its training courses, from undergraduate to doctoral level. Paris-Sud University is home to 32,000 students, including 2,600 doctoral students, and 5,200 international students from 145 countries, with 4,300 lecturers, researchers, and research professors, together with 2,500 engineering, technical, and administrative personnel.

www.u-psud.fr

About Inserm

L'Inserm en chiffres	Inserm in figures
Budget 908 M€	Budget € 908 M
Collaborateurs 13 296	Staff 13 296
Communiqués de presse 123	Press releases 123
Laboratoires 351	Laboratories 351
Publications scientifiques 13 220	Scientific publications 13 220