COVID-19: Discovery of a Molecular Signature of Pediatric Myocarditis

In very rare cases, children having contracted COVID-19 go on to develop severe inflammation 4 to 6 weeks after infection with SARS-CoV-2. In two-thirds of them, this inflammatory syndrome affects the heart, leading to myocarditis. In a study published in the journal MED, researchers, doctors and teacher-researchers from Inserm, the Paris hospitals group AP-HP and Université de Paris at the Imagine Institute, in collaboration with Institut Pasteur, analyzed blood samples from a cohort of 56 pediatric patients admitted to Hôpital Necker Enfants-Malades AP-HP. What they saw was the abnormal expression of several genes associated with the development of severe forms of myocarditis. A molecular signature that could ultimately help identify those children at risk of developing this rare cardiac inflammation.

Certain children with SARS-CoV-2 develop severe inflammation four to six weeks after infection, with varying symptoms: fever, stomach pain, skin rashes, etc. In around 70% of cases, this so-called “multisystem” inflammatory syndrome affects the myocardium, the muscle responsible for heart contractions. These severe cases of myocarditis were first reported in the UK, in March 2020, before being observed in Italy, France, and then all over the world. What is the explanation behind these rare forms?

Cutting-edge analyses

In a study published in MED – a journal from Cell Press –, conducted by Inserm researchers Frédéric Rieux-Laucat and Mickaël Ménager (*) working in two laboratories at the Imagine Institute (Inserm, Université de Paris, Paris hospitals group AP-HP), in collaboration with doctors from Hôpital Necker-Enfants Malades AP-HP and Institut Pasteur, cutting-edge molecular investigations were conducted in order to find out more. The result of these investigations was the identification of several genes linked to the development of severe forms of myocarditis in these children.

As part of the study, the authors analyzed blood samples from 56 children hospitalized between April 6 and May 30, 2020. A total of 30 had developed multisystem inflammatory syndrome following SARS-CoV-2 infection, 21 of whom with a severe form of myocarditis, and 9 without. "To understand the difference between these two patient groups, we did several analyses using state-of-the-art techniques: an ultra-sensitive assay of cytokines – the immune system hormones that enable an appropriate response in case of infection –, characterization of blood cell composition, and a cell-by-cell analysis of gene expression", explains Ménager.

Three molecular abnormalities

In both groups, the researchers found reduced numbers of monocytes and dendritic cells (white blood cells), increased inflammatory cytokine levels, and an overactivation of the so-called “NF-kB pathway” within these cells. "NF-kB is a molecular pathway that enables a set of genes to be activated, resulting in the production of proteins tasked with orchestrating the immune response," summarizes Rieux-Laucat. However, it is precisely the overactivation of this system that triggers hyperinflammation in these patients.

Following closer comparison of the dendritic cells and monocytes of the two groups, the authors observed three specific anomalies in patients with myocarditis: lack of inhibition in the NF-kB pathway, overproduction of "TNF-α" (cytokine involved in NF-kB pathway activation), and finally a lack of response to type I and II interferons (cytokines involved in regulating inflammation).
All of these abnormalities can be explained by the abnormal expression of certain genes. In order to identify these genes, the authors carried out a cell-by-cell genetic analysis. “Like this we were able to identify and validate over one hundred genes overexpressed specifically in the monocytes and dendritic cells of patients with severe forms of myocarditis”, explains Ménager. A molecular signature that could ultimately enable the development of tests to identify patients at risk of developing this severe cardiac inflammation.

(*) Frédéric Rieux-Laucat heads up the Immunogenetics of Pediatric Autoimmune Diseases laboratory. Mickaël Ménager heads up the Inflammatory Responses and Transcriptomic Networks in Diseases laboratory and the LabTech Single-Cell@Imagine, a platform dedicated to the cell-by-cell study of gene expression.

Sources

A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis

Camille de Cevins,1,2 Marine Luka,1,3,30 Nikaïa Smith,4,30 Sonia Meynier,5,30 Aude Mageérus,5,30 Francesco Carbone,1,3,31 Victor Garcia-Paredes,1,3,31 Laura Barnabei,5,31 Maxime Batignes,1 Alexandre Boullé, Marie-Claude Stolzenberg,5 Brieuc P. Pérot,1 Bruno Charbit,1 Tinhinane Fali,1 Vithura Pirakakaran,5 Boris Sorin,5 Quentin Riller,5 Gaïth Abdessalem,1 Maxime Beretta,7,8 Ludivine Grzelak,9 Pedro Goncalves,10,11 James P. Di Santo,10,11 Hugo Mouquet,7,8 Olivier Schwartz,9 Mohammed Zarhate,12 Mélanie Parisot,12 Christine Boile-Feyssol,12 Cécile Masson,13 Nicolas Cagnard,13 Aurélien Corneau,14 Camille Brunaud,5 Shen-Ying Zhang,15,16 Jean-Laurent Casanova,15,16,17 Brigitte Bader-Meunier,17 Julien Haroche,18 Isabelle Melki,17,19 Mathie Lorrot,20 Mehdi Oualha,20 Florence Moulin,21 Damien Bonnet,22 Zahra Belhadjer,22 Marianne Leruez,23 Slimane Allali,24 Christèle Gras-Leguen,25 Loïc de Pontual,26 Pediatric-Biocovid Study Group, Alain Fischer,17,27,28 Darragh Duffy,4,6,32 Frédéric Rieux-Laucat,5,32 Julie Toubiana,24,29,32 and Mickael Ménager1,3,32,33,*

1 Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
2 Molecular Biology and Genomics, Translational Sciences, Sanofi R&D, Chilly-Mazarin, France 3
Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
4 Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015 Paris, France
5 Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
6 Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, 75015, Paris, France
7 Humoral Immunology Laboratory, Department of Immunology, Institut Pasteur, 75015, Paris, France 8
INSERM U1222, Institut Pasteur, 75015, Paris, France
9 Virus and Immunity Unit, Department of Virology, Institut Pasteur, 75015, Paris, France 10
INSERM U1223, Institut Pasteur, 75015, Paris, France
11 Innate Immunity Unit, Department of Immunology, Institut Pasteur, 75015, Paris, France
12 Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cîte University, Paris, France
13 Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
14 Sorbonne Université, UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, 75013 Paris, France
15 Université de Paris, Imagine Institute, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, 75015 Paris, France
16 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA

17 Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris (AP-HP), 75015 Paris, France

18 Department of Immunology and Infectious Disease (CIMI-Paris), Pitié-Salpêtrière University Hospital, Sorbonne Université AP-HP, 75013 Paris, France

19 Department of Pediatrics, Robert-Debré University Hospital, AP-HP, Université de Paris, Paris, France

20 Department of Pediatrics, Armand-Trousseau University Hospital, AP-HP, 75012 Paris, France

21 Pediatric Intensive Care Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, 75015 Paris, France

22 M3C-Necker Enfants Malades, AP-HP, Paris, France

23 Virology Laboratory, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, 75015 Paris, France

24 Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades University Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), Université de Paris, 75015 Paris, France

25 Pediatric Department, Nantes University Hospital, CIC 1413, INSERM, 44000 Nantes, France

26 Department of Pediatrics, Jean Verdier Hospital, Assistance Publique-Hôpitaux de Paris, Paris 13 University, Bondy, FranceUniversité de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France 28 Collège de France, Paris, France

29 Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France

30 These authors contributed equally
31 These authors contributed equally
32 These authors contributed equally
33 Lead contact

MED, September 2021

DOI: https://doi.org/10.1016/j.medj.2021.08.002

Researcher contact

Frédéric Rieux Laucat Inserm
Research Director
Imagine Institute (Inserm/AP-HP/Université de Paris)
email: frederic.rieux-laucat@inserm.fr

Press contact

Inserm: presse@inserm.fr
AP-HP: service.presse@aphp.fr Institut Pasteur: presse@pasteur.fr Université de Paris: presse@u-paris.fr

Access the Inserm press room