Communiqués et dossiers de presse

Les antibiotiques perturbent l’efficacité de l’immunothérapie

Communiqué | 03 nov. 2017 - 13h33 | Par INSERM (Salle de presse)
Cancer

 

©fotolia

Une étude publiée dans la revue Science par des chercheurs de Gustave Roussy, l’Inserm, l’Inra, l’AP-HP, IHU Méditerranée Infection et l’Université Paris-Sud démontre que la prise d’antibiotiques affecte l’efficacité d’un traitement par immunothérapie chez des patients atteints d’un cancer. Or, environ 20% des malades du cancer sont sous antibiothérapie. En analysant le microbiote intestinal de patients par métagénomique, les chercheurs ont montré que la présence de la bactérie Akkermansia muciniphila est associée à une meilleure réponse des patients à l’immunothérapie par anticorps anti-PD-1. De plus, en administrant cette bactérie à des souris comportant un microbiote défavorable, l’activité anti-tumorale de l’immunothérapie est restaurée.

Véritable révolution thérapeutique, l’immunothérapie a prouvé sa supériorité sur le traitement standard dans la prise en charge du mélanome métastatique, du cancer du poumon, du rein ou encore de la vessie mais son efficacité est limitée à une proportion de malades. «Nos travaux expliquent en partie pourquoi certains patients ne répondent pas. La prise d’antibiotiques a un impact négatif sur la survie des malades sous immunothérapies. La composition du microbiote est un facteur prédictif de réussite » résument le Dr Bertrand Routy, médecin hématologue à l’origine de ces travaux et sa directrice, le Pr Laurence Zitvogel, directrice du laboratoire « Immunologie des tumeurs et immunothérapie » (Inserm/Université Paris-Sud/Gustave Roussy).

Dans une première série, sur 249 patients traités par immunothérapie basée sur l’anti-PD-1/PD-L1 pour un cancer avancé du poumon, du rein ou de la vessie, 28% avaient pris des antibiotiques à cause d’une infection dentaire, urinaire ou pulmonaire mais leur état de santé général n’était pas différent de celui des patients non traités par antibiotiques.

Les résultats de l’étude démontrent qu’en créant un déséquilibre au niveau du microbiote intestinal (ou dysbiose), la prise d’antibiotiques deux mois avant et jusqu’à un mois après le début du traitement a un impact négatif sur la survie sans progression de la maladie  et la survie globale des patients dans ces trois types de cancer.

Un microbiote favorable déterminé par métagénomique

La composition précise du microbiote intestinal a été établie par métagénomique avant puis pendant le traitement sous immunothérapie chez 153 patients atteints d’un cancer du poumon ou du rein. Cette analyse de tous les gènes bactériens présents dans le microbiote intestinal a été menée par l’Inra (MétaGénoPolis, Dr Emmanuelle Le Chatelier). Une composition favorable, enrichie en Akkermansia muciniphila, a été identifiée chez les patients répondant le mieux à l’immunothérapie et chez ceux dont la maladie était stabilisée pendant au moins 3 mois.

Booster un microbiote défavorable

Pour prouver un lien direct de cause à effet entre la composition du microbiote intestinal et l’efficacité de l’immunothérapie, un microbiote favorable (provenant de patients ayant démontré une bonne réponse clinique à l’immunothérapie anti-PD-1) et un microbiote défavorable (provenant de patients en échec) ont été transférés à des souris qui en étaient dépourvues. Les souris transplantées avec le microbiote favorable présentaient une évolution favorable lorsqu’elles étaient traitées par immunothérapie contrairement à celle comportant le microbiote défavorable. Chez ces dernières, l’administration d’Akkermansia muciniphila a permis de restaurer l’efficacité de l’immunothérapie par anti-PD-1. En modifiant le microbiote de la souris, l’efficacité de l’immunothérapie a été rétablie grâce à l’activation de certaines cellules du système immunitaire.

Les résultats d’une équipe américaine (Dr Jennifer Wargo, MD Anderson, Houston, Texas) publiés en même temps dans la même revue viennent appuyer ces données en démontrant que la composition du microbiote de patients atteints d’un mélanome métastatique permet de prédire leur réponse à une immunothérapie anti-PD-1.

Ces travaux se poursuivent dans le cadre du projet Torino-Lumière (programme d’investissement d’Avenir de 9 M€). L’objectif du projet Torino-Lumière est de développer de nouveaux marqueurs prédictifs de la réponse thérapeutique aux immunothérapies des patients porteurs de cancers bronchiques, à partir de l’étude de leur microbiote. Une étude prospective multicentrique a démarré en 2016 avec pour objectif d’établir des signatures bactériennes favorables afin de développer des traitements basés sur une combinaison bactéries/immunothérapies.

À propos de l’immunothérapie

Les immunothérapies ont engendré une révolution thérapeutique en cancérologie. Ces nouvelles immunothérapies, par transfert de lymphocytes T activés ou par anticorps monoclonaux (anti-CTLA4 ou anti-PD1) ou bispécifiques, déclenchent le réveil du système immunitaire du patient.  Elles permettent non seulement de réduire la taille des tumeurs mais aussi, et pour la première fois, de prolonger notablement la survie des malades voire de les guérir de cancers métastatiques ou localement avancés.

À propos du microbiote intestinal

Le microbiote intestinal (anciennement appelé flore intestinale) est un écosystème complexe composé de 100 000 milliards de bactéries, virus, archae, parasites, levures… Ceux-ci colonisent l’intestin dès la naissance et participent à la maturation des défenses immunitaires. Chaque individu est doté d’un microbiote qui lui est propre. Sa composition est dictée par des facteurs génétiques, nutritionnels et environnementaux.

POUR CITER CET ARTICLE :
Communiqué – Salle de Presse Inserm Les antibiotiques perturbent l’efficacité de l’immunothérapie Lien : http://presse.inserm.fr/les-antibiotiques-perturbent-lefficacite-de-limmunotherapie/29901/
Voir les sources

Gut microbiome influences efficacy of PD-1 based-immunotherapy against epithelial tumors

Science, publication avancée en ligne du 2 novembre 2017

Bertrand Routy1,2,3, Emmanuelle Le Chatelier4, Lisa Derosa1,2,3, Connie P. M. Duong1,2,5, Maryam Tidjani Alou1,2,3, Romain Daillère1,2,3, Aurélie Fluckiger1,2,5, Meriem Messaoudene1,2, Conrad Rauber1,2,3, Maria P. Roberti1,2,5, Marine Fidelle1,3,5, Caroline Flament1,2,5, Vichnou Poirier-Colame1,2,5, Paule Opolon6, Christophe Klein7, Kristina Iribarren8,9,10,11,12, Laura Mondragón8,9,10,11,12, Nicolas Jacquelot1,2,3, Bo Qu1,2,3, Gladys Ferrere1,2,3, Céline Clémenson1,13, Laura Mezquita1,14, Jordi Remon Masip1,14, Charles Naltet15, Solenn Brosseau15, Coureche Kaderbhai16, Corentin Richard16, Hira Rizvi17, Florence Levenez4, Nathalie Galleron4, Benoit Quinquis4, Nicolas Pons4, Bernhard Ryffel18, Véronique Minard-Colin1,19, Patrick Gonin1,20, Jean-Charles Soria1,14, Eric Deutsch1,13, Yohann Loriot1,3,14, François Ghiringhelli16, Gérard Zalcman15, François Goldwasser9,21,22, Bernard Escudier1,14,23, Matthew D. Hellmann24,25, Alexander Eggermont1,2,14, Didier Raoult26, Laurence Albiges1,3,14, Guido Kroemer8-12,27,28*, and Laurence Zitvogel1,2,3,5*.

1Gustave Roussy Cancer Campus (GRCC), Villejuif, France.
2Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France. Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France.
3Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.
4MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France.
5Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.
6Gustave Roussy, Laboratoire de Pathologie Expérimentale, 94800 Villejuif, France.
7Centre de Recherche des Cordeliers, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités, Paris, France.
8Metabolomics and Cell Biology Platforms, GRCC, Villejuif, France.
9Paris Descartes University, Sorbonne Paris Cité, Paris, France.
10Equipe 11 Labellisée—Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.
11Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
12Pierre et Marie Curie University, Paris, France.
13Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France; INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay.
14Department of Medical Oncology, Gustave Roussy, Villejuif, France.
15Thoracic Oncology Department-CIC1425/CLIP2 Paris-Nord, Hospital Bichat-Claude Bernard, AP-HP, University Paris-Diderot.
16Department of medical oncology, Center GF Leclerc, Dijon, France.
17Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
18Molecular Immunology and Embryology, UMR 7355, CNRS, University of Orleans, Orléans, France.
19Department of Pediatric Oncology, GRCC, Villejuif, France.
20Preclinical Research Platform, GRCC, Villejuif, France.
21Department of Medical Oncology, Cochin Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France.
22Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Paris, France
23Institut National de la Santé Et de la Recherche Medicale (INSERM) U981, GRCC, Villejuif, France.
24Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
25Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
26URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, IHU – Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille
27Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique—Hôpitaux de Paris, Paris, France.
28Department of Women’s and Children’s Health, Karolinska University Hospital, 17176 Stockholm, Sweden.

fermer
fermer
RSS Youtube