Menu

Vieillissement, maladies et cancer de l’os : la moésine, une molécule qui pèse dans la balance

En l’absence de moésine, les ostéoclastes humains présentent des noyaux surnuméraires (en rose). L’actine est représentée en blanc. – Microscopie à fluorescence © Ophélie Dufrançais

Comme un arbre, le squelette est vivant. Il se développe et doit être taillé pour rester harmonieux. Pour maintenir cet état, les ostéoclastes endossent le rôle de jardinier, élaguant les os usés. Ces grosses cellules, uniques par leur morphologie et leurs fonctions, jouent un rôle crucial dans l’équilibre du squelette, mais aussi dans certaines maladies osseuses, comme l’ostéoporose et le cancer. Une équipe de chercheuses et chercheurs de l’Inserm, du CNRS et de l’Université de Toulouse, en collaboration avec des équipes internationales, vient de mettre en évidence que leur formation et leur activité sont façonnées par une protéine : la moésine. Leurs travaux, publiés dans The Journal of Cell Biology, montrent que celle-ci contrôle la taille des ostéoclastes ainsi que leur capacité à détruire l’os. Ces découvertes ouvrent de nouvelles pistes qui pourraient, à terme, contribuer au développement de traitements innovants contre les maladies osseuses très souvent liées au vieillissement.

L’os est une structure rigide mais dynamique. Tout au long de la vie, il grandit, se casse, se répare, mais aussi se détériore. Le remodelage osseux est un processus complexe, qui nécessite une coopération entre différentes cellules, parmi lesquelles les ostéoblastes qui participent à la création de l’os, et les ostéoclastes qui le détruisent continuellement. Tout est une question d’équilibre dynamique entre formation et dégradation du tissu osseux.

Une instabilité dans ce processus provoque des maladies et des complications. Avec l’âge notamment, les ostéoclastes deviennent plus agressifs et se mettent à trop dégrader les os, entraînant des défauts et des pertes osseuses caractéristiques du vieillissement et des maladies associées comme l’ostéoporose. Cette hyper-agressivité des ostéoclastes est également observable dans les cancers osseux et métastases qui détruisent l’os.

Des équipes de recherche françaises et internationales, co-coordonnées par Christel Vérollet, directrice de recherche Inserm au sein de l’Institut de pharmacologie et biologie structurale (CNRS/Université de Toulouse), se sont penchées sur la raison de cette suractivité. Dans une nouvelle étude, elles s’intéressent à la moésine, une protéine à multiples fonctions connue notamment pour réguler l’architecture interne des cellules (le cytosquelette), et montrent qu’elle joue un rôle central dans la formation et l’activité des ostéoclastes.

Après avoir enlevé la moésine dans des ostéoclastes de souris pour évaluer les conséquences sur leur formation et leur fonction, les scientifiques ont pu répliquer in vitro les résultats sur des ostéoclastes humains, plus difficiles à cultiver en laboratoire. Ce modèle de souris dénuées de moésine, développé par une équipe à Philadelphie, a permis d’évaluer les conséquences de cette délétion sur l’os et d’obtenir une représentation plus complète – et à l’échelle du vivant – du rôle de cette molécule.

Toutes les observations semblent concorder : la moésine régulerait la formation mais aussi l’agressivité des ostéoclastes. Sans moésine, les ostéoclastes sont plus gros et plus actifs. Chez les souris dépourvues de la protéine, l’augmentation du nombre et de l’activité des ostéoclastes se matérialise par une perte osseuse visible aux scanners mais aussi détectable avec des marqueurs sanguins, similaires à ceux testés chez les patients atteints d’ostéoporose.

« Les ostéoclastes sont uniques. Ce sont les seules cellules du corps à pouvoir dégrader de l’os. Mais ce sont aussi des cellules à plusieurs noyaux car ils naissent de la fusion de plusieurs cellules », explique Christel Vérollet.

Les travaux des chercheuses et chercheurs montrent que la moésine contrôlerait, dans un premier temps, la fusion de ces cellules en régulant la formation de petits ponts à leur jonction (les nanotubes membranaires) qui sont essentiels à la communication entre deux cellules juste avant leur fusion. Dans un second temps, une fois les ostéoclastes formés, cette même moésine réorganiserait leur cytosquelette interne pour réguler leur action de destruction de l’os.

« Nous avons identifié une nouvelle protéine impliquée dans la fusion cellulaire des ostéoclastes. Ces résultats ouvrent la voie à une nouvelle avenue thérapeutique contre le vieillissement et les maladies de l’os, qui ciblerait non pas la viabilité des ostéoblastes, comme envisagé jusqu’à maintenant, mais leur fusion », détaille Christel Vérollet.

Malheureusement, la moésine n’est pas spécifique aux ostéoclastes. Elle joue de multiples rôles dans le corps et dans différentes cellules, ce qui pose un problème pour l’envisager comme cible thérapeutique primaire.

« Identifier des régulateurs de la moésine, spécifiques des ostéoclastes, pourrait avoir les applications thérapeutiques escomptées, à la fois contre le vieillissement osseux mais aussi contre les conséquences désastreuses de certains cancers sur l’os. Mais pour cela, des études sont encore nécessaires », conclut Christel Vérollet.

Une meilleure compréhension du rôle et des interacteurs de cette protéine au carrefour de la fusion cellulaire, de la communication intercellulaire et de la perte osseuse, est la clé de l’aboutissement de ces promesses.

L’exposition à des températures élevées au début de la vie pourrait être à l’origine de troubles linguistiques et neurodéveloppementaux chez les jeunes enfants

baromètre© Adobe Stock

Dans un monde où la fréquence et l’intensité des vagues de chaleurs s’amplifient, il devient crucial de comprendre leur impact sur les générations futures. Des travaux d’une équipe de l’Inserm, du CNRS et de l’Université Grenoble Alpes, publiés dans Environmental Health montrent pour la première fois un lien entre exposition à des températures élevées pendant la grossesse et les premiers mois de vie et conséquences négatives sur le neurodéveloppement des jeunes enfants. Les données récoltées auprès de 12 000 couples mère-enfant de la cohorte Elfe identifient des périodes charnières au cours du second trimestre de la grossesse et de la petite enfance, pendant lesquelles des pics de température pourraient être associés à un retard de développement linguistique.

Coups de chaud et canicules ne sont pas sans risques pour la santé. Les températures extrêmes contribuent largement au fardeau sanitaire global, impactant significativement l’espérance de vie des populations, en particulier chez les personnes fragiles. Les femmes enceintes et les nourrissons, dont les processus de thermorégulation ne sont pas aussi efficaces, sont particulièrement sensibles au stress thermique. Facteurs probables de déclenchement de l’accouchement, les vagues de chaleur pendant la grossesse sont associées à un risque accru de mortinatalité, de prématurité, ou à un poids de naissance faible. Des évènements périnataux qui ont déjà été associés, dans la littérature scientifique, à des conséquences à long terme sur le développement de l’enfant, en particulier neurologique.

Des études chez l’animal ont montré que les températures extrêmes impacteraient différents mécanismes neurobiologiques comme la prolifération, la différenciation et la migration des neurones, provoquant des perturbations neurodéveloppementales chez les rongeurs et les poissons, avec des conséquences cognitives délétères. Chez l’humain, aucune étude ne s’était encore intéressée aux effets de la température ambiante sur le neurodéveloppement.

Une équipe de recherche menée par Johanna Lepeule, directrice de recherche à l’Inserm, au sein de l’Institut pour l’avancée des biosciences (Inserm/CNRS/Université Grenoble Alpes), et Itai Kloog, professeur à l’université Ben-Gourion (Israël), a étudié pour la première fois l’impact des températures extrêmes sur le développement linguistique à l’âge de deux ans, un des premiers marqueurs d’apprentissage quantifiable.

Pour ce faire, les chercheuses et chercheurs ont utilisé les données de la cohorte nationale Elfe[1], combinées à des modèles d’exposition à la température dits « à fine échelle » : semaine par semaine, tout au long de la grossesse et des premiers mois de vie, ils et elles ont estimé, à 1 km près à la campagne et à 200 m près en ville, les températures éprouvées et leurs effets sur les capacités langagières des enfants à deux ans.

Grâce aux 12 000 couples mère-enfant qui ont été inclus dans ce travail, les scientifiques ont pu identifier des périodes au cours de la grossesse et de la petite enfance durant lesquelles le développement des enfants serait plus vulnérable aux vagues de chaleurs. Des températures extrêmes au début du deuxième trimestre de grossesse (14 à 19e semaine de grossesse), et durant les sept premiers mois de vie apparaissent ainsi associées à une diminution des capacités langagières de l’enfant allant jusqu’à 15 %. À l’inverse des températures froides pendant la période prénatale, incitant les femmes à rester en intérieur à des températures confortables, étaient associées à une amélioration des scores d’acquisitions de langage.

« Aujourd’hui, on sait qu’à court terme, la chaleur joue sur les capacités immédiates de concentration et diminue les performances cognitives. Si les effets de la chaleur sur le développement neuropsychologique de l’enfant observés dans nos travaux sont confirmés, il faudra s’attendre à découvrir des conséquences, pas seulement ponctuelles, mais sur toute la durée de la vie, explique Johanna Lepeule. Nos résultats sont un signal précurseur de l’impact d’un réchauffement global sur le développement cognitif humain à long terme. Nous travaillons actuellement pour comprendre dans quelle mesure les générations futures pourraient être impactées. En attendant, l’identification de ces fenêtres de vulnérabilité est un premier indicateur qui pourrait permettre de cibler des messages de prévention », conclut la chercheuse.

[1]Elfe est la première étude longitudinale française d’envergure nationale consacrée au suivi des enfants de la naissance à l’âge adulte. Plus de 18 000 enfants nés en France métropolitaine en 2011 ont été inclus dans l’étude (soit 1 enfant sur 50 parmi les naissances de 2011). L’étude Elfe mobilise environ 150 chercheurs appartenant à diverses disciplines scientifiques et est coordonnée par l’Inserm et l’Institut national d’études démographiques (Ined).

Les bactériophages, vers une alternative ciblée aux antibiotiques

Représentation d’un phage fixé sur une bactérie. © Adrien BernheimReprésentation d’un phage fixé sur une bactérie. © Adrien Bernheim

Avec l’essor des antibiotiques dans les années 1930, la phagothérapie (c’est à dire l’utilisation de virus appelés bactériophages dans la lutte contre les infections bactériennes) a été abandonnée. Aujourd’hui, la montée de l’antibiorésistance rend le traitement des infections bactériennes de plus en plus difficile et la phagothérapie suscite à nouveau l’intérêt des médecins et des chercheurs malgré sa complexité de mise en œuvre due à la très grande diversité et spécificité des bactériophages. C’est ainsi que des scientifiques de l’Institut Pasteur, de l’Inserm, de l’AP-HP et de l’Université Paris Cité ont développé un nouvel outil susceptible de choisir, de façon simple et efficace, le meilleur cocktail de bactériophages possible pour un patient donné. Pour cela, ils ont élaboré et entraîné un modèle à base d’intelligence artificielle capable de sélectionner sur mesure des bactériophages en se basant uniquement sur le génome des bactéries ciblées. Les résultats de ces travaux ont été publiés le 31 octobre 2024 dans la revue Nature Microbiology, et ouvrent la voie à des phagothérapies personnalisées pour combattre des infections bactériennes résistantes aux antibiotiques.

Certaines bactéries, comme Escherichia coli, se montrent de plus en plus résistantes aux antibiotiques classiques et deviennent ce que l’on appelle des « superbactéries ». Pour contourner ces résistances, qui représentent un problème de santé publique majeur, des équipes de recherche explorent la voie de la phagothérapie. Le principe : utiliser des virus, appelés phages ou bactériophages, qui n’infectent que des bactéries pour éliminer de façon ciblée celles pathogènes pour l’homme.

« La phagothérapie a été inventée par le chercheur pasteurien Félix d’Hérelle dans les années 1920 puis a été abandonnée avec l’essor des antibiotiques à la fin des années 1930, beaucoup plus simples et économiques à fabriquer et à utiliser. Aujourd’hui, seuls quelques pays de l’Europe de l’Est, comme la Géorgie, utilisent encore la phagothérapie, tandis que dans les pays occidentaux, des phages à “large spectre” sont utilisés ponctuellement de façon compassionnelle pour traiter des infections chroniques multirésistantes aux antibiotiques(1), quand plus aucun médicament autorisé n’est efficace, rappelle Baptiste Gaborieau, co-premier auteur de l’article, médecin réanimateur à l’Hôpital Louis Mourier (AP-HP) et chercheur dans le laboratoire IAME (Université Paris Cité-Inserm). Depuis une vingtaine d’années, grâce à sa promotion par l’OMS(2) et plus récemment la mise en place d’essais cliniques notamment européens, la phagothérapie suscite à nouveau l’intérêt. »

L’un des défis est de savoir quel bactériophage sera efficace pour lutter contre une infection donnée, sachant que chaque phage ne peut infecter que certaines souches(3) bactériennes. Dans le sol ou l’eau où les phages sont présents naturellement, ils circulent jusqu’à trouver la bonne cible. C’est ainsi que des scientifiques de l’Institut Pasteur, de l’Inserm, de l’AP-HP et de l’Université Paris-Cité, ont décidé d’étudier de plus près les interactions bactéries-phages afin de savoir s’il était possible de prédire l’efficacité d’un bactériophage sur une souche bactérienne donnée. La première étape a donc consisté en la création d’une base de données de qualité avec d’un côté 403 souches de bactéries Escherichia coli et de l’autre 96 bactériophages. Un travail qui aura nécessité plus de deux ans d’efforts.

« Nous avons mis en contact les phages avec les bactéries en culture et observé quelles bactéries étaient tuées. Nous avons étudié 350 000 interactions et réussi à identifier, au niveau du génome des bactéries, les caractéristiques susceptibles de prédire l’efficacité des phages, résume Aude Bernheim, principale autrice de l’étude et responsable du laboratoire Diversité moléculaire des microbes à l’Institut Pasteur.

« Contrairement à ce que l’on pensait initialement, ce sont les récepteurs à la surface des bactéries et non leurs mécanismes de défenses qui déterminent en premier lieu la capacité des bactériophages à pouvoir ou non infecter les bactéries, et qui présagent de leur efficacité », poursuit Florian Tesson, co-premier auteur de l’article et doctorant dans les laboratoires Diversité moléculaire des microbes à l’Institut Pasteur et IAME à l’Université Paris Cité-Inserm.

Grâce à cette analyse précise et complète des mécanismes d’interaction entre les bactéries et les phages, les bio-informaticiens de l’équipe ont pu concevoir un programme d’intelligence artificielle optimisé et efficace. Ce dernier se base sur l’analyse du génome des bactéries, et plus particulièrement sur l’analyse des régions impliquées dans le codage des récepteurs membranaires de la bactérie, porte d’entrée des phages.

« Nous ne sommes pas ici devant une “ boîte noire “, et c’est ce qui fait la force de notre modèle à base d’IA. Nous savons exactement comment il fonctionne, ce qui nous aide à améliorer ses performances », souligne Hugo Vaysset co-premier auteur de l’article et doctorant au laboratoire Diversité moléculaire des microbes à l’Institut Pasteur.

Après plus de deux ans de conception et d’entraînement, l’IA a ainsi été capable de prédire correctement l’efficacité des bactériophages face aux bactéries E. coli de la base de données dans 85 % des cas, simplement en analysant l’ADN des bactéries.

« C’est un résultat qui surpasse nos attentes », avoue Aude Bernheim.

Pour aller plus loin, les chercheurs ont testé leur modèle sur une nouvelle collection de souches bactériennes d’E. coli responsable de pneumonies et ont sélectionné, pour chacune d’entre elles, un « cocktail » sur mesure de trois bactériophages. Dans 90 % des cas, les bactériophages choisis sur mesure par l’IA ont réussi leur mission et détruit les bactéries en présence. Cette méthode, facilement utilisable dans les laboratoires de biologie hospitalière, ouvre la voie dans les années à venir à une sélection personnalisée et rapide de traitements par bactériophages en cas de diagnostic d’infection bactérienne à Escherichia coli très résistants aux antibiotiques.

« Nous devons encore tester le comportement des phages dans différents environnements, mais la preuve de concept est faite. Nous espérons pouvoir l’étendre à d’autres bactéries pathogènes, car notre IA a été conçue pour s’adapter facilement à d’autres cas de figure, et offrir dans le futur des traitements de phagothérapie personnalisés », conclut Aude Bernheim.

 

  1. En France, les phages peuvent être utilisés dans le cadre d’une Autorisation temporaire d’utilisation (ATU) nominative
  2. https://www.who.int/europe/fr/news/item/25-06-2024-building-evidence-for-the-use-of-bacteriophages-against-antimicrobial-resistance
  3. Groupe de bactéries ayant des caractéristiques communes au sein d’une espèce donnée

Vulnérabilité du placenta à la pollution de l’air : quels effets sur le développement de l’enfant à naître ?

fœtus modélisé© AdobeStock

Comment l’exposition à la pollution de l’air pendant la grossesse impacte-t-elle son bon déroulement et le développement de l’enfant à naître ? Une équipe de recherche de l’Inserm et de l’Université Grenoble Alpes s’est intéressée à la façon dont l’ADN du placenta serait modifié par l’exposition à trois grands polluants aériens. En comparant les données obtenues chez près de 1 500 femmes enceintes, elle a ainsi pu observer que l’exposition à ces polluants durant la grossesse était associée à des modifications épigénétiques[1] susceptibles d’altérer le développement du fœtus, en particulier aux niveaux métabolique, immunitaire et neurologique. Ses résultats, à paraître dans The Lancet Planetary Health, montrent en outre que les périodes de susceptibilité aux polluants de l’air seraient différentes en fonction du sexe du fœtus, impactant ainsi le développement de façon différenciée entre les filles et les garçons.

L’exposition à la pollution de l’air extérieur présente un risque majeur pour le bon déroulement de la grossesse. Elle est notamment suspectée d’être à l’origine de pathologies cardio-métaboliques, respiratoires ou encore neuropsychologiques chez l’enfant à naître. Cependant, si ses effets physiologiques ont été étudiés, les mécanismes moléculaires en jeu sont encore mal compris.

Le placenta est un organe qui joue un rôle clé dans le développement fœtal. Particulièrement vulnérable à de nombreux composés chimiques, il peut être assimilé à une « archive » témoignant de l’environnement prénatal de l’enfant : les modifications épigénétiques survenant dans ses cellules reflètent en partie les expositions environnementales de la mère au cours de la grossesse. Pour étudier ces modifications, on mesure le plus souvent le niveau de méthylation de l’ADN, un des mécanismes épigénétiques les mieux connus, impliqué dans le contrôle et l’expression des gènes.

Une équipe de recherche menée par Johanna Lepeule, chercheuse Inserm, au sein de l’Institut pour l’avancée des biosciences (Inserm/CNRS/Université Grenoble Alpes), s’est intéressée à l’impact de trois polluants aériens – le dioxyde d’azote (NO2), et les particules fines (PM2,5 et PM10) – sur la méthylation de l’ADN placentaire. Grâce aux données de trois cohortes mère-enfant[2] françaises, elle a pu comparer l’exposition à ces polluants et les niveaux de méthylation chez plus de 1 500 participantes pendant leur grossesse.

Ses résultats montrent un impact significatif de l’exposition aux trois polluants aériens sur les niveaux de méthylation de l’ADN placentaire concernant des gènes impliqués dans le développement fœtal. Un tiers de ces modifications étaient directement associées avec des indicateurs du développement de l’enfant (poids et taille de naissance, périmètre crânien, durée de la grossesse…).

D’autres modifications placentaires concernaient des gènes impliqués dans le développement du système nerveux, du système immunitaire et du métabolisme – dont des gènes impliqués dans la survenue du diabète néonatal ou de l’obésité.

Si ces altérations de la méthylation sont présentes chez les deux sexes, les scientifiques ont également pu mettre en évidence des modifications ayant un impact additionnel et touchant des gènes différents en fonction du sexe de l’enfant à naître. Deux périodes de gestation différentes particulièrement vulnérables aux modifications épigénétiques sous l’effet des polluants émergent dans ces travaux : le début de la grossesse (1er trimestre) chez les garçons et la fin de la grossesse (3e trimestre) chez les filles.

« Nos résultats montrent que l’exposition à la pollution de l’air pendant la grossesse induirait des modifications de la méthylation de l’ADN placentaire propres à chacun des deux sexes, indique Johanna Lepeule. Cet impact différencié pourrait contribuer à des altérations du développement et du déroulement de la grossesse différentes en fonction du sexe de l’enfant à naître. »

Ainsi, chez les garçons, ont été détectées des altérations significatives de la méthylation au niveau de gènes impliqués de façon critique dans le développement du système nerveux et de l’intellect.

« Ces observations viennent appuyer les études de plus en plus nombreuses à associer l’exposition à la pollution de l’air pendant la grossesse et une atteinte du neurodéveloppement et/ou une réduction des capacités cognitives, avec une plus grande vulnérabilité des enfants de sexe masculin », précise Lucile Broséus, chercheuse Inserm et première autrice de la publication.

Chez les filles, les méthylations touchaient des gènes impliqués dans le développement fœtal et la régulation du stress oxydatif. Elles pourraient ainsi être associées à des défauts de développement susceptibles d’augmenter les risques de développer des maladies chroniques métaboliques (hypertension, diabète, obésité…) plus tard dans la vie, mais aussi à la survenue de fausses-couches ou de pré-éclampsies chez la mère[3].

Ces travaux fournissent donc de nouvelles données concernant les mécanismes épigénétiques impliqués dans la dérégulation de la croissance fœtale sous l’effet de la pollution de l’air et qui pourraient être à l’origine de modifications à long terme du métabolisme.

« De prochaines études pourront investiguer si les changements épigénétiques placentaires causés par l’exposition à la pollution de l’air pendant la grossesse persistent après l’accouchement et comment ils pourraient influencer le développement durant l’enfance, complète Johanna Lepeule. En outre, ce travail de recherche ayant été réalisé sur des cohortes françaises, ses résultats devront être vérifiés dans des populations d’autres régions géographiques et avec des profils génétiques différents », conclut la chercheuse.

 

[1] Les modifications épigénétiques sont matérialisées par des marques biochimiques présentes sur l’ADN. Réversibles, elles n’entraînent pas de modification de la séquence d’ADN mais induisent toutefois des changements dans l’expression des gènes. Elles sont induites par l’environnement au sens large : la cellule reçoit des signaux l’informant sur son environnement, et se spécialise en conséquence, ou ajuste son activité.

[2]Les cohortes EDEN, pilotée par l’Inserm, le CHU de Poitiers et le CHU de Nancy ; PELAGIE, pilotée par l’Inserm ; et SEPAGES, pilotée par l’Inserm et le CHU Grenoble Alpes.

[3]La pré‐éclampsie est une pathologie de la grossesse caractérisée par une élévation de la pression artérielle et de la quantité de protéines présente dans les urines. Elle peut survenir au milieu du second trimestre ou plus tardivement, peu de temps avant l’accouchement ou parfois même après. Responsable d’un tiers des naissances de grands prématurés en France, ce syndrome est une cause majeure de retard de croissance intra‐utérin. Non traitée, elle peut mener au décès de la mère et/ou de l’enfant.

L’embryon humain doit son premier changement de forme à la contraction de ses cellules

Embryon humain au stade blastocysteEmbryon humain au stade blastocyste prêt à s’implanter. L’enveloppe du noyau des cellules est visible en bleu et le cytosquelette d’actine en orange. © Julie Firmin et Jean-Léon Maître (Institut Curie, Université PSL, CNRS UMR3215, INSERM U934)

La compaction de l’embryon humain, étape indispensable à son développement dans ses premiers jours de formation, est impulsée par la contraction de ses cellules. C’est ce que viennent de découvrir des scientifiques du CNRS, de l’Institut Curie, de l’Inserm, de l’AP-HP et du Collège de France. Ces résultats, à paraitre dans Nature le 1er mai 2024, contredisent le présupposé rôle moteur de l’adhésion des cellules embryonnaires dans ce phénomène et ouvrent la voie à une amélioration des techniques de fécondation in vitro.

Chez l’espèce humaine, la compaction des cellules embryonnaires est une étape cruciale au bon développement de l’embryon. Le quatrième jour après la fécondation, les cellules se rapprochent les unes des autres avant de donner à l’embryon sa première forme. Une compaction défaillante empêche la formation de la structure qui garantit son implantation dans l’utérus maternel. Cette étape est donc particulièrement surveillée avant toute implantation d’embryon en procréation médicalement assistée (PMA).

En s’intéressant aux mécanismes en jeu dans ce phénomène encore mal connu, une équipe de recherche interdisciplinaire1 menée par des scientifiques du laboratoire Génétique et biologie du développement (CNRS/Inserm/Institut Curie) a fait une découverte surprenante : la compaction de l’embryon humain est impulsée par une contraction des cellules embryonnaires. Les difficultés de compaction ne seraient donc pas dues à un manque d’adhérence entre les cellules embryonnaires, contrairement à ce qui était supposé jusqu’alors, mais à des défauts de contractilité des cellules. Si ce mécanisme avait déjà été identifié chez la mouche, le poisson zèbre ou la souris, c’est une première chez l’espèce humaine.

En améliorant notre compréhension des premières étapes du développement embryonnaire humain, l’équipe de recherche espère contribuer au perfectionnement des techniques d’identification des embryons fécondés in vitro dans le cadre de PMA, alors que près d’un tiers des inséminations sont aujourd’hui infructueuses2.

Ces résultats ont été obtenus en cartographiant les tensions à la surface de cellules embryonnaires humaines. Les scientifiques ont également testé les effets d’une inhibition de la contractilité ou de l’adhésion des cellules, et analysé la signature mécanique de cellules embryonnaires à la contractilité défaillante.

Embryon humain au stade 4 cellules.Embryon humain au stade 4 cellules. L’ADN des cellules est visible en rouge et leur cytosquelette d’actine en bleu. La cellule de droite vient de séparer son génome en deux et s’apprête à se diviser. © Julie Firmin et Jean-Léon Maître

 

1 Ont également participé à ces travaux des scientifiques du Centre interdisciplinaire de recherche en biologie (CNRS/Collège de France/Inserm), du Service de biologie de la reproduction – CECOS (AP-HP), de l’Institut Cochin (CNRS/Inserm/Université Paris Cité).

2 Source : Agence de la biomédecine

Obésité : privilégier les omégas 3 pour prévenir les risques associés à la maladie

Microglies (en jaune, cellules immunitaires du cerveau)

Microglies (en jaune, cellules immunitaires du cerveau), activées par la nature pro-inflammatoire d’un régime enrichi en huile de tournesol (microscopie à fluorescence). © Clara Sanchez/Inserm

L’obésité est un problème de santé publique majeur, qui touche près de 650 millions d’adultes dans le monde[1]. Cette maladie est souvent associée à une inflammation systémique et cérébrale ainsi qu’à des troubles de l’anxiété ou cognitifs, comme par exemple des déficits de mémoire. Dans une nouvelle étude, des chercheuses et des chercheurs de l’Inserm, du CNRS et d’Université Côte d’Azur, au sein de l’Institut de pharmacologie moléculaire et cellulaire, ont essayé de comprendre plus précisément la manière dont l’alimentation pouvait entraîner l’obésité, ainsi que les comorbidités qui lui sont associées. Ils se sont intéressés plus spécifiquement aux acides gras oméga 6 (ω6) et oméga 3 (ω3), explorant les effets sur la santé de divers régimes alimentaires avec des ratios d’acides gras variables (voir encadré ci-dessous). Leurs résultats indiquent un qu’un régime enrichi en ω6 (dans ce cas précis, en huile de tournesol) est fortement associé à des altérations du métabolisme, de l’inflammation et des fonctions cognitives, tandis qu’un régime enrichi en ω3 (ici, en huile de colza) présente certains effets préventifs. Ces travaux permettent d’envisager des interventions diététiques se fondant sur un faible rapport ω6/ω3 (en préférant donc plutôt l’huile de colza à l’huile de tournesol) pour lutter contre l’obésité et les troubles neurologiques qui lui sont associés. Ils sont publiés dans Brain Behavior and Immunity.

Selon l’OMS, depuis 1975, le nombre de cas d’obésité a presque triplé à l’échelle planétaire. La pathologie est associée à de nombreuses comorbidités (diabète de type 2, maladies cardiovasculaires, arthrose, cancers et troubles cognitifs) et à une mortalité élevée. Ses causes sont complexes et impliquent l’interaction de plusieurs facteurs. Une alimentation non équilibrée est néanmoins reconnue comme le facteur contributif majeur de la maladie.

Par ailleurs, de précédentes études[2] ont montré que l’obésité était associée non seulement à un dysfonctionnement métabolique, mais aussi à une inflammation chronique au niveau des organes périphériques (les tissus adipeux, le foie, les muscles squelettiques et le pancréas), ainsi qu’au niveau du système nerveux central (on parle alors de neuro-inflammation). Cette neuro-inflammation dans l’obésité se caractérise par l’augmentation de marqueurs pro-inflammatoires au niveau de la région de l’hypothalamus, région du cerveau connue pour contrôler le comportement alimentaire[3]. Cependant, la nature des lipides nutritionnels qui pourraient être responsables de cette neuro-inflammation n’a pas encore été élucidée.

Dans une nouvelle étude, des chercheuses et des chercheurs de l’Inserm, du CNRS et d’Université Côte d’Azur se sont spécifiquement intéressés à certains acides gras essentiels au bon fonctionnement de notre organisme, et connus pour avoir des propriétés anti- et pro-inflammatoires : les omégas 3 et 6 (voir encadré ci-dessous). Leur objectif : mieux comprendre si dans le cadre d’un régime riche en lipides (dit « régime obésogène ») ces omégas 3 et 6 sont impliqués dans le phénomène de neuro-inflammation, et s’ils peuvent être associés au développement de l’obésité.

Leurs travaux partent par ailleurs du constat d’une tendance toujours plus forte dans les pays développés à une consommation excessive d’omégas 6, dont les propriétés inflammatoires sont bien documentées dans la littérature scientifique[4].

Omégas 3 et omégas 6 : l’importance de l’équilibre entre les acides gras

Omégas 3 et omégas 6 sont des acides gras essentiels au bon fonctionnement de notre organisme qui n’est pas en mesure de les produire ni de les synthétiser par lui-même. Ils doivent donc être apportés par l’alimentation, mais leur consommation doit respecter un certain équilibre (on parle de ratio oméga 6/oméga 3), afin de combiner les propriétés pro-inflammatoires des omégas 6 avec les propriétés anti-inflammatoires des omégas 3.

  • les acides gras oméga 6: par exemple les acides linoléique et gamma-linolénique se retrouvent dans de nombreuses huiles telles que celles de tournesol et de maïs ;
  • les acides gras oméga 3: par exemple les acides eicosapentaénoïque et docosahéxanoïque se retrouvent dans les poissons gras, ou l’acide alpha-linolénique dans les huiles telles que celles de lin, de chanvre, de colza, de noix ou de soja.

Les scientifiques ont évalué, dans des modèles animaux, les effets sur la santé de trois régimes alimentaires obésogènes – riches en lipides – présentant chacun un ratio d’acides gras variable.

Pour composer ces régimes spécifiques, les chercheurs ont utilisé des huiles végétales disponibles dans le commerce, à savoir de l’huile de colza (riche en oméga 3) et de l’huile de tournesol (riche en oméga 6). L’un contenait un ratio d’acides gras oméga 6/oméga 3 élevé, c’est-à-dire, très enrichi en omégas 6 et donc en huile de tournesol. Le second présentait un ratio intermédiaire, équilibré en omégas 3 et en omégas 6 ; le dernier était très enrichi en omégas 3, et donc en huile de colza.

Ils ont pu mesurer grâce à divers examens les effets variables de ces régimes sur la prise de poids et le stockage de graisse, la réponse au niveau de l’homéostasie glucidique[5], le développement de l’anxiété et troubles cognitifs, ainsi que l’inflammation du cerveau.

Au terme de l’expérience qui a duré jusqu’à 5 mois, les scientifiques ont ainsi pu observer (résultats résumés dans le schéma ci-dessous) :

  • une altération du métabolisme, de la neuro-inflammation et des fonctions cognitives, notamment une augmentation de l’anxiété et des troubles de la mémoire spatiale chez les souris obèses soumises au régime enrichi en omégas 6, et donc en huile de tournesol ;
  • un effet protecteur du régime enrichi en omégas 3, riche en huile de colza, sur la prise de poids, la régulation de l’homéostasie glucidique et le développement de troubles cognitifs.

« Alors qu’on attribuait jusqu’alors à l’obésité l’augmentation de l’état inflammatoire, dans cette étude nous montrons que l’état inflammatoire dépend du type de régime auquel est exposé l’animal. Autrement dit, c’est le fait d’être nourri avec un régime riche en omégas 6 qui est responsable des phénomènes inflammatoires observés et non l’obésité elle-même », explique Clara Sanchez, chercheuse post-doctorante à l’Inserm, première autrice de l’article.

« Cette étude montre aussi pour la première fois l’effet protecteur contre l’obésité et les phénomènes inflammatoires associés que peut présenter un régime enrichi en lipides, à condition de favoriser la consommation d’omégas 3. Ces travaux permettent d’envisager des interventions diététiques se fondant sur un faible rapport ω6/ω3 pour lutter contre l’obésité et les troubles neurologiques qui lui sont associés », explique Carole Rovère, chercheuse Inserm dernière autrice de l’article.

Dans leur découverte, les scientifiques ont par ailleurs observé chez ces souris, une modification de la forme de certaines cellules du cerveau situées dans l’hypothalamus, les microglies, qui semblent s’activer en réponse à un régime riche en omégas 6. Leurs travaux consisteront désormais à mieux comprendre le rôle spécifique de ces cellules dans l’obésité.

 

[1]OMS, 2016

[2]Gregor et Hotamisligil, 2011 ; Thaler et al., 2012

[3] Baufeld et al., 2016 ; Cansell et al., 2021 ; De Souza et al., 2005 ; Le Thuc et Rovère, 2016 ; Salvi et al., 2022

[4] L’OMS préconise de consommer cinq omégas 6 pour un oméga 3. Alors qu’au sein des sociétés occidentales, ce rapport explose – il serait 3 fois supérieur aux recommandations actuelles d’omégas 6.

[5]L’homéostasie glucidique est un état d’équilibre entre les apports (absorption intestinale suite à un repas ou production de glucose par le foie) et l’utilisation de glucose (entrée de glucose et utilisation dans les organes).

Antibiorésistance : un nouveau mécanisme observé en temps réel grâce à des techniques de microscopie innovantes

Depuis plusieurs années, le problème de l’antibiorésistance gagne du terrain. © Photo Hal Gatewood/Unsplash

Mieux comprendre la manière dont les bactéries acquièrent des résistances aux antibiotiques est un enjeu de recherche pour répondre à la problématique majeure de santé publique qu’est l’antibiorésistance. Le principal mécanisme de dissémination de ces résistances est appelé « transfert d’ADN par conjugaison bactérienne ». Jusqu’ici, on pensait qu’il ne pouvait se faire qu’entre bactéries en contact direct l’une avec l’autre. Dans une nouvelle étude, des chercheurs et chercheuses de l’Inserm, du CNRS et de l’université Claude-Bernard – Lyon 1, au sein du laboratoire Microbiologie moléculaire et biochimie structurale, ont mis en lumière un nouveau mode de transfert de résistances entre bactéries, en démontrant pour la première fois, grâce à des techniques innovantes de microscopie, qu’un transfert d’ADN entre des cellules physiquement distantes est en fait possible. Ces résultats, ainsi que leurs nombreuses implications théoriques et cliniques, sont publiés dans le journal PNAS

Les antibiotiques ont permis de faire considérablement reculer la mortalité associée aux maladies infectieuses au cours du xxe siècle et ont donc constitué une avancée majeure dans le domaine de la médecine. Cependant, depuis plusieurs années, le problème de l’antibiorésistance gagne du terrain. En France, on comptabilise environ 5 500 décès liés à ce phénomène chaque année. De nombreuses équipes de recherche s’intéressent donc désormais au sujet, ce qui a permis d’accroître considérablement nos connaissances sur l’origine des résistances aux antibiotiques.

Ces résistances peuvent survenir par exemple via une mutation génétique affectant le chromosome de la bactérie, ou bien être liées à l’acquisition de matériel génétique étranger porteur d’un ou plusieurs gènes de résistance en provenance d’une autre bactérie.

Dans ce second cas, le transfert d’ADN de la bactérie résistante « donneuse » à la bactérie « receveuse » peut se faire selon plusieurs mécanismes, le principal étant connu sous le nom de « conjugaison bactérienne ». Il est au cœur des travaux de recherche menés par Christian Lesterlin, directeur de recherche Inserm, et son équipe de l’unité Microbiologie moléculaire et biochimie structurale (CNRS/Université Claude-Bernard – Lyon 1).

Pendant longtemps, la conjugaison bactérienne a été décrite comme un transfert d’ADN qui ne pouvait se faire que lorsque la bactérie donneuse était en contact physique direct avec la bactérie receveuse. L’établissement de ce contact implique un « pilus de conjugaison », un petit appendice tubulaire présent à la surface des bactéries donneuses qui permet la fixation à une bactérie receveuse.

« Le pilus peut être décrit comme une sorte de “grappin moléculaire” exposé à la surface de la bactérie donneuse et capable de s’étendre pour rechercher et s’arrimer à une bactérie receveuse. Le pilus est ensuite capable de se rétracter pour établir un contact de membrane à membrane entre les bactéries, avant le transfert d’ADN. Cependant, il y a 60 ans, des scientifiques ont proposé que ce pilus puisse aussi servir de tunnel par lequel passerait l’ADN, permettant au transfert de se faire à distance entre deux bactéries qui ne seraient pas directement en contact. Mais les recherches visant à obtenir une preuve directe d’un tel transfert sont longtemps restées infructueuses, laissant cette hypothèse en suspens », explique Christian Lesterlin.

Jusqu’à récemment en effet, il n’existait pas de technique de visualisation permettant d’observer directement le transfert d’ADN entre bactéries. Avec ses collègues, le généticien à l’Inserm a donc décidé d’utiliser des approches de microscopie à fluorescence innovantes, développées au sein de son laboratoire, pour visualiser directement la conjugaison entre cellules vivantes. Ce type d’approche avait déjà porté ses fruits une première fois en 2019, quand l’équipe avait observé en direct l’acquisition de résistances aux antibiotiques par une bactérie E. Coli[1].

Dans cette nouvelle étude, les chercheurs ont développé une technique permettant de visualiser en temps réel et pour la première fois le transfert d’ADN à travers le pilus étendu, qui établit un contact entre deux bactéries physiquement distantes.

Image de microscope à fluorescence Image de microscope à fluorescence montrant le transfert de l’ADN (en jaune) à travers le pilus de conjugaison de la bactérie donneuse (vert) à une bactérie receveuse (rouge). © Kelly Goldlust – Lesterlin LAB (MMSB, Lyon)

« Nos observations en microscopie démontrent sans équivoque que le pilus a une double fonction. Il permet d’établir un contact direct entre deux cellules, mais il peut aussi servir de conduit pour l’ADN pendant le transfert entre des cellules physiquement éloignées. Ces résultats contribuent à actualiser nos connaissances à propos du transfert de résistance par conjugaison bactérienne, en montrant que, dans certains cas, il n’est pas nécessaire que les bactéries soient en contact direct pour que l’ADN soit transféré et qu’une dissémination de résistance ait lieu », souligne Christian Lesterlin.

Ces travaux favorisent ainsi une meilleure compréhension des mécanismes de dissémination de l’antibiorésistance. En effet, le fait de savoir que deux bactéries physiquement distantes peuvent échanger leur ADN permet d’envisager que des transferts de résistance puissent avoir lieu dans différents environnements où le contact direct entre bactéries est rendu plus difficile par la complexité ou la viscosité du milieu, comme au sein de l’intestin par exemple.

Enfin, en mettant en lumière un mode de transfert de l’ADN jusqu’alors mal caractérisé, ce travail pourrait aussi à plus long terme ouvrir la voie au développement d’outils thérapeutiques visant à cibler et à inhiber ces mécanismes de transmission de la résistance aux antibiotiques entre bactéries.

Pour en savoir plus : consulter le dossier Résistance aux antibiotiques sur  inserm.fr

[1]S. Nolivos et al., Science, 24 mai 2019 ; doi : 10.1126/science.aav6390

Inflammation et cancer : l’identification du rôle du cuivre ouvre la voie à de nouvelles applications thérapeutiques

équipe Curie

L’équipe de recherche a élaboré un « prototype-médicament » capable d’atténuer tant les mécanismes d’inflammation que les processus potentiellement impliqués dans la dissémination métastatique. © Institut Curie / BELONCLE Frank

Pour la première fois, des chercheurs de l’Institut Curie, du CNRS et de l’Inserm dévoilent une chaîne de réactions biochimiques jusque-là inconnue : elle implique le cuivre et conduit à des modifications métaboliques et épigénétiques[1] qui activent l’inflammation et la progression tumorale. Mais ce n’est pas tout : l’équipe de recherche a élaboré un « prototype-médicament » capable d’atténuer tant les mécanismes d’inflammation que les processus potentiellement impliqués dans la dissémination métastatique. Publiés dans la revue Nature le 26 avril 2023, ces résultats laissent entrevoir de nouvelles opportunités thérapeutiques dans le contrôle de l’inflammation et du cancer.

L’inflammation est un processus biologique complexe qui permet l’élimination des pathogènes et la réparation des tissus endommagés. Cependant, une dérégulation du système immunitaire peut conduire à une inflammation incontrôlée qui entraîne des lésions et qui contribue à des processus pathologiques. C’est le cas du cancer où le rôle de l’inflammation est avéré dans la progression tumorale. Or, les mécanismes moléculaires sous-jacents à l’inflammation restent encore mal connus aujourd’hui et, de fait, le développement de nouveaux médicaments représente un défi considérable.

En 2020 déjà, le Dr Raphaël Rodriguez, directeur de recherche au CNRS et chef de l’équipe « Chemical Biology » à l’Institut Curie (Equipe Labellisée Ligue Contre le Cancer) au laboratoire Chimie et biologie de la cellule (Institut Curie/ CNRS/ Inserm), avait apporté un éclairage nouveau sur un récepteur membranaire appelé CD44, qui marque la réponse immunitaire, l’inflammation et le cancer en particulier. Le chercheur et son équipe avaient ainsi montré que CD44 permettait le transport du fer dans la cellule[2], déclenchant alors une série de réactions conduisant à l’activation de gènes impliqués dans le processus métastatique.

« Il s’agit là d’un phénomène de plasticité cellulaire que nous avons continué d’étudier avec l’implication d’autres métaux aussi internalisés grâce à CD44, en particulier le cuivre », explique le chercheur.

 

Le cuivre à l’origine de modifications épigénétiques

Cancer cuivre

Aujourd’hui, avec ses collègues[3], le Dr Rodriguez vient de franchir une nouvelle étape. Les chercheurs ont en effet réussi à identifier une voie de signalisation impliquant le cuivre et conduisant à l’expression des gènes de l’inflammation dans les macrophages, des cellules qui sont présentes dans tous les tissus et qui jouent un rôle majeur dans la réponse immunitaire innée.

Une fois internalisé dans les macrophages, le cuivre pénètre dans les mitochondries (les organites responsables de la respiration cellulaire), où il catalyse l’oxydation du NADH en NAD+ (nicotinamide adénine dinucléotide, une molécule nécessaire à l’activité de certaines enzymes). L’augmentation de NAD+ dans les cellules permet l’activation d’autres enzymes, impliquées dans la production de métabolites essentiels à la régulation épigénétique. Ces métabolites permettent alors l’activation des gènes impliqués dans l’inflammation.

 

Inflammation et cancer : des mécanismes moléculaires communs

Les scientifiques ne se sont pas contentés de cette découverte : ils ont également conçu des molécules capables de se lier au cuivre, inspirées de la metformine[4]. En les testant sur des modèles d’inflammation aigüe d’origine virale ou bacterienne, ils ont identifié qu’une molécule de synthèse dimère de la metformine, LCC-12 (aussi nommée Supformine), réduisait l’activation des macrophages et atténuait l’inflammation.

« Nos travaux nous ont permis de développer un prototype de médicament qui inactive le cuivre dans la machinerie métabolique de la cellule, bloquant ainsi l’expression des gènes impliqués dans l’inflammation », décrypte le Dr Rodriguez.

Pour finir, ils ont appliqué cette stratégie thérapeutique sur des cellules cancéreuses engagées dans une transition épithélio-mésenchymateuse[5]. Là encore, la Supformine a mis un frein au mécanisme cellulaire et donc à la transformation des cellules.

« Les gènes activés au sein des cellules cancéreuses ne sont pas les mêmes que ceux impliqués dans les cellules immunitaires, mais la réaction en chaîne qui conduit aux modifications épigénétiques est identique », explique le Dr Rodriguez.

Ces résultats mettent ainsi en évidence le rôle du cuivre des cellules cancéreuses et leur capacité à adopter un caractère métastatique.

Le Dr Raphaël Rodriguez conclut : « Notre étude révèle finalement que les processus inflammatoires et cancéreux dépendent de mécanismes moléculaires semblables et pourraient donc bénéficier dans le futur de thérapies innovantes similaires, telles que celle testée avec le Supformine »

 

L’explication en vidéo du Dr Raphaël Rodriguez :

 

[1] L’épigénétique étudie les mécanismes intervenant dans la régulation des gènes, essentielle à l’action des cellules et au maintien de leur identité. Contrairement aux mutations génétiques qui sont figées, les modifications épigénétiques sur l’ADN ou les histones sont réversibles.

[2] Lire le communiqué de presse « Cancer : un nouveau mécanisme de régulation de l’activité cellulaire impliquant le fer » : https://curie.fr/sites/default/files/medias/documents/2020-08/CPCNRS-CD44ferCancer-FR-emb.pdf

[3] L’étude a été menée à l’Institut Curie, au sein de l’unité Chimie et biologie de la cellule (Institut Curie, CNRS, Inserm), en collaboration avec l’UVSQ, l’hôpital Raymond Poincaré (AP-HP), Gustave Roussy, l’Institut de chimie moléculaire et des matériaux d’Orsay (CNRS/Université Paris-Saclay), Multimodal Imaging Center (Centre d’imagerie multimodale, CNRS/Institut Curie/Inserm/Université Paris-Saclay), Centre d’infection et d’immunité de Lille (CNRS/Inserm/Institut Pasteur de Lille/CHU de Lille/Université de Lille), Institut de pharmacologie et biologie structurale (CNRS/Université Toulouse III) ainsi que des chercheurs britanniques et australiens.

[4] Le Metformin est un traitement utilisé contre le diabète de type 2, capable de former un complexe bi-moléculaire avec le cuivre.

[5] La transition épithélio-mésanchymateuse (TEM) est la première étape permettant aux cellules cancéreuses de métastaser.

Températures extrêmes durant la grossesse : un impact possible sur le développement pulmonaire des nourrissons filles

Grossesse

Les températures extrêmes pourraient avoir un impact sur la santé dès l’exposition au stade fœtal. © Fotalia

Les températures extrêmes pourraient avoir un impact sur la santé dès l’exposition au stade fœtal. C’est ce que suggère une étude menée par des chercheuses et chercheurs de l’Inserm, de l’Université Grenoble Alpes et du CNRS, à partir de la cohorte SEPAGES[1], destinée à étudier l’impact de plusieurs facteurs environnementaux sur la santé de la femme enceinte et de l’enfant. Dans ces travaux, à paraître dans JAMA Network open, des associations ont été retrouvées chez les petites filles, entre l’exposition in utero à des températures ambiantes très élevées ou très basses dès le second trimestre de grossesse et une altération de plusieurs paramètres respiratoires.

La thermorégulation mise en place par le corps en réponse aux variations de température exige une adaptation du flux sanguin et de la fonction cardiaque maternelle qui, lorsqu’elle survient au cours de la grossesse, peut se faire au détriment du fœtus. Des altérations physiologiques ont d’ailleurs été observées chez l’animal en réponse à des stress thermiques comme des anomalies de développement placentaire avec un flux sanguin réduit, ou du stress oxydatif – qui, hors des conditions normales, peut impacter la santé de la mère et de la descendance. La température extérieure pourrait donc avoir un impact sur le développement embryonnaire et fœtal.

Une équipe, menée par les chercheuses Inserm Johanna Lepeule et Ariane Guilbert au sein de l’Institut pour l’avancée des biosciences (Inserm/Université Grenoble Alpes/CNRS), a souhaité vérifier cette hypothèse en utilisant les données de la cohorte SEPAGES (Suivi de l’Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé). Composée de femmes enceintes et des enfants issus de leurs grossesses, cette cohorte permet d’étudier l’effet de différents facteurs environnementaux sur la santé.

 

Une exposition modélisée tout au long de la grossesse

Les chercheuses et chercheurs ont modélisé l’exposition aux températures ambiantes de 343 femmes et de leurs enfants, depuis la conception jusqu’aux premières semaines de vie du nourrisson. En parallèle, ils ont évalué la fonction respiratoire des nouveau-nés six à sept semaines après la naissance environ. Différentes mesures ont permis de calculer le volume d’air inspiré et expiré à chaque respiration (appelé volume courant), la fréquence respiratoire (nombre de respirations par minute) ou encore la capacité résiduelle fonctionnelle (CRF), qui correspond au volume d’air restant dans les poumons après une expiration[2].

Comme le développement fœtal et la fonction respiratoire présentent de légères différences selon le sexe, l’équipe de recherche a également comparé les résultats entre les filles et les garçons.

 

Des associations variables selon le sexe

Chez les garçons, les scientifiques n’ont pas observé d’altérations significatives de la fonction pulmonaire associées à la température extérieure pendant la grossesse. En revanche, ils ont constaté que les filles exposées in utero dès le second trimestre de grossesse aux températures les plus élevées ou aux températures les plus basses présentaient une CRF moins importante et une fréquence respiratoire plus élevée que celles exposées à des températures plus proches de la moyenne.

Les filles exposées pendant la grossesse de leur mère à des températures très basses présentaient, en outre, un volume courant diminué.

« Les variations observées ne sont pas de nature pathologique et ne permettent pas de prédire un trouble respiratoire par la suite, précise Johanna Lepeule, mais les différentes mesures de la fonction pulmonaire réalisées convergent toutes vers une association chez la petite fille entre exposition in utero aux températures élevées ou basses et de moins bonnes performances pulmonaires chez le nouveau-né. »

De nouvelles analyses sur les données respiratoires collectées chez les enfants à 3 et 8 ans devront être effectuées afin de déterminer si ces associations persistent sur le long terme ou si elles sont réversibles dans le temps.

En attendant, « ces résultats sous-tendent l’importance de développer des politiques publiques pour protéger les femmes enceintes et leurs enfants des températures extrêmes, en particulier dans le contexte actuel de réchauffement climatique », conclut Johanna Lepeule.

 

[1] La cohorte couple-enfant SEPAGES (Suivi de l’Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé), coordonnée par l’Inserm et l’Université Grenoble Alpes, vise à caractériser l’exposition des femmes enceintes et des enfants aux contaminants de l’environnement et à étudier l’effet de ces contaminants sur la santé de la femme enceinte, du fœtus et de l’enfant.

[2] Ce volume résiduel a un rôle essentiel dans le maintien de la fonction pulmonaire : le poumon étant élastique, il se rétracte lors du relâchement musculaire permettant l’expiration. Le volume résiduel permet, en fin d’expiration, de limiter les forces de rétractation qui s’exercent sur les poumons afin que les territoires pulmonaires restent ouverts aux échanges gazeux (O2 et CO2 essentiellement). Dans le cas contraire, le poumon se refermerait sur lui-même, les alvéoles s’affaisseraient et les échanges gazeux ne pourraient donc plus avoir lieu.

Un « nano-robot » entièrement construit à base d’ADN pour explorer les processus cellulaires

Les scientifiques sont parvenus à concevoir un « nano-robot » composé de trois origamis d’ADN. Crédits : Gaëtan Bellot/Inserm

Mieux comprendre divers processus invisibles à l’œil nu, qui ont lieu à l’échelle de nos cellules, grâce à un minuscule robot construit à base dADN… Si cela s’apparenterait presque à un projet de science-fiction, il s’agit en fait de travaux très sérieux menés par des chercheurs et chercheuses de l’Inserm, du CNRS et de l’Université de Montpellier au Centre de biologie structurale de Montpellier[1]. Ce « nano-robot », très innovant, devrait permettre d’étudier de plus près des forces mécaniques qui s’appliquent à des niveaux microscopiques et qui sont cruciales pour de nombreux processus biologiques et pathologiques. Le dispositif est décrit dans une nouvelle étude, publiée dans la revue Nature Communications.

Des forces mécaniques s’exercent à l’échelle microscopique sur nos cellules, déclenchant des signaux biologiques qui sont essentiels à de nombreux processus cellulaires impliqués dans le fonctionnement normal de notre organisme ou dans le développement de pathologies.

Par exemple, la sensation de toucher est en partie conditionnée à l’application de forces mécaniques sur des récepteurs cellulaires spécifiques (dont la découverte a été récompensée cette année par le prix Nobel de médecine).

Outre le toucher, ces récepteurs sensibles aux forces mécaniques (on parle de mécano-récepteurs) permettent la régulation d’autres processus biologiques clés comme la constriction des vaisseaux sanguins, la perception de la douleur, la respiration ou encore la détection des ondes sonores dans l’oreille, etc.

Un dysfonctionnement de cette mécano-sensibilité cellulaire est notamment impliqué dans de nombreuses pathologies comme le cancer : les cellules cancéreuses migrent dans le corps en sondant et en s’adaptant constamment aux propriétés mécaniques de leur microenvironnement. Cette adaptation peut se faire seulement parce que des forces spécifiques sont détectées par des mécano-récepteurs qui transmettent l’information vers le cytosquelette des cellules.

A l’heure actuelle, nos connaissances sur ces mécanismes moléculaires impliqués dans la mécano-sensibilité cellulaire sont encore très limitées. Plusieurs technologies sont déjà disponibles pour appliquer des forces contrôlées et étudier ces mécanismes, mais elles comportent un certain nombre de limites. Elles sont notamment très coûteuses et ne permettent pas d’étudier plusieurs récepteurs cellulaires à la fois, ce qui signifie qu’elles sont très chronophages à utiliser si l’on souhaite collecter de nombreuses données.

Origamis d’ADN

Pour proposer une alternative, l’équipe de recherche menée par le chercheur Inserm Gaëtan Bellot au Centre de biologie structurale (Inserm/CNRS/Université de Montpellier) a décidé de s’appuyer sur la méthode des origamis d’ADN. Celle-ci permet l’auto-assemblage de nanostructures 3D dans une forme prédéfinie en utilisant la molécule d’ADN comme matériel de construction. Au cours des dix dernières années, la technique a permis des avancées majeures dans le domaine des nanotechnologies.

Les chercheurs et chercheuses sont ainsi parvenus à concevoir un « nano-robot » composé de trois origamis d’ADN. De taille nanométrique, il est donc compatible avec la taille d’une cellule humaine. Il permet pour la première fois d’appliquer et de contrôler une force avec une résolution de 1 piconewton, soit un mille-milliardième de Newton, un Newton correspondant à la force d’un doigt sur le poussoir du stylo. C’est la première fois qu’un objet auto-assemblé à base d’ADN créé par l’humain peut appliquer une force avec cette précision.

Dans un premier temps, le robot est couplé avec une molécule qui reconnaît un mécano-récepteur. Ce couplage permet ensuite de diriger le robot sur certaines de nos cellules et appliquer spécifiquement des forces sur les mécano-récepteurs cellulaires ciblés et localisés à la surface des cellules afin de les activer.

Un tel outil est très précieux pour la recherche fondamentale, car il pourrait être utilisé pour mieux comprendre les mécanismes moléculaires impliqués dans la mécano-sensibilité cellulaire et découvrir de nouveaux récepteurs cellulaires sensibles aux forces mécaniques. Grâce au robot, les scientifiques pourront également étudier plus précisément à quel moment, lors de l’application d’une force, des voies de signalisation clés pour de nombreux processus biologiques et pathologiques s’activent au niveau des cellules.

« La conception d’un robot qui permet d’appliquer des forces de l’ordre du piconewton in vitro et in vivo répond à une demande croissante dans la communauté scientifique et représente une avancée technologique importante. En revanche, la biocompatibilité du robot peut être à la fois considérée comme un avantage pour des applications in vivo mais également représenter une faiblesse avec une sensibilité aux enzymes qui peuvent dégrader l’ADN. Donc la prochaine étape de notre travail sera d’étudier comment on peut modifier la surface du robot pour qu’il soit moins sensible à l’action des enzymes. Nous allons également tenter de trouver d’autres modes d’activation de notre robot en utilisant par exemple un champ magnétique », souligne Gaëtan Bellot.

[1] Ont également contribué à ces travaux l’Institut de génomique fonctionnelle (CNRS/Inserm/Université de Montpellier), l’Institut des biomolécules Max Mousseron (CNRS/Université de Montpellier/ENSCM), le Centre de recherche Paul Pascal (CNRS/Université de Bordeaux) et le laboratoire Physiologie et médecine expérimentale du cœur et des muscles (CNRS/Inserm/Université de Montpellier.

fermer