Menu

Les Nanoblades : des navettes pour opérer le génome

©Adobestock

Pour éditer le génome de façon précise, les chercheurs disposent désormais des « ciseaux génétiques » CRISPR/Cas9, outil très prometteur pour la thérapie génique. Le défi technologique aujourd’hui est d’amener cet outil jusqu’au génome de certaines cellules. Dans cet objectif, une équipe associant l’Inserm, le CNRS, l’Université Claude Bernard Lyon 1 et l’École normale supérieure de Lyon au sein du Centre international de recherche en infectiologie (CIRI) ont développé des capsules permettant d’amener CRISPR/Cas9 jusqu’à l’ADN cible : les Nanoblades. Décrites dans Nature Communications, elles ouvrent des perspectives pour la recherche sur l’édition du génome des cellules souches humaines.

Depuis 2012, la communauté scientifique dispose d’une méthode révolutionnaire pour « opérer » le génome de façon précise : le système CRISPR/Cas9. Ces ciseaux moléculaires sont capables de couper l’ADN à un endroit précis dans une grande variété de cellules. Ils offrent par conséquent des perspectives considérables pour la recherche et pour la santé humaine. Cependant, amener ces « ciseaux génétiques » jusqu’à leur cible – notamment le génome de certaines cellules souches – reste un défi technique.

C’est sur cette problématique que travaillent des équipes de recherche de l’Inserm, du CNRS, de l’Université Claude Bernard Lyon 1 et de l’École normale supérieure de Lyon qui ont développé les Nanoblades[1], des particules qui permettent de délivrer CRISPR/Cas9 dans de nombreuses cellules, y compris des cellules humaines.

Les scientifiques ont eu l’idée d’encapsuler le système CRISPR/Cas9 dans des structures ressemblant beaucoup à des virus et assurer ainsi sa livraison au sein d’une cellule cible, en fusionnant avec la membrane de cette dernière.

Pour concevoir ces Nanoblades, les chercheurs ont exploité les propriétés de la protéine rétrovirale GAG, qui a la capacité de produire des particules virales non infectieuses car dénuées de génome. L’équipe de recherche a fusionné la protéine GAG d’un rétrovirus de souris avec la protéine CAS9 – le ciseau du système CRISPR. Cette nouvelle protéine dite « fusion » fait l’originalité des Nanoblades.

Par conséquent, et à l’inverse des techniques classiquement utilisées pour modifier le génome, les Nanoblades encapsulent un complexe CRISPR/Cas9 immédiatement fonctionnel ; elles ne délivrent donc aucun acide nucléique codant le système CRISPR/Cas9 dans les cellules traitées. « L’action de CRISPR/Cas9 dans les cellules est ainsi temporaire. Elle est également plus précise et préserve les régions non ciblées du génome, atout particulièrement important dans le cadre d’applications thérapeutiques », précisent les auteurs.

Enfin, les chercheurs ont utilisé une combinaison originale de deux protéines d’enveloppe virales à la surface des Nanoblades pour leur permettre d’entrer dans une large gamme de cellules cibles.

 

Les scientifiques ont démontré l’efficacité des Nanoblades in vivo, dans l’embryon de souris, pour un large spectre d’applications et dans un large panel de cellules cibles où d’autres méthodes sont peu performantes. « Les Nanoblades s’avèrent notamment efficaces pour corriger le génome des cellules souches humaines, cellules d’un grand intérêt thérapeutique (notamment dans la reconstitution de tissus) mais restant difficiles à manipuler par les méthodes habituelles », précisent les auteurs de ces travaux.

 

[1] Les Nanoblades ont été testées chez la souris et brevetées en 2016 par Inserm Transfert.

Une thérapie génique à l’essai pour traiter la myopathie myotubulaire

 

Des chercheurs Inserm et CNRS de l’Institut de génétique et de biologie moléculaire et cellulaire (Inserm/CNRS/Université de Strasbourg) ont découvert comment la myotubularine, protéine déficitaire dans la myopathie myotubulaire, interagit avec l’amphiphysine 2 et proposent de cibler cette dernière pour traiter les patients. Ces travaux sont parus le 20 mars 2019 dans Science Translational Medicine.

La myopathie myotubulaire est une maladie génétique rare, affectant environ un enfant sur 50 000. Elle est liée à une mutation sur le gène MTM1 situé sur le chromosome X et se manifeste par une diminution d’adhésion des cellules musculaires entre elles et une altération des fibres musculaires. Ce phénomène entraine une grande faiblesse musculaire, y compris au niveau respiratoire, et provoque un décès prématuré avec deux tiers des patients qui ne dépassent pas l’âge de deux ans. A ce jour, il n’existe pas de traitement.

En explorant les interactions de la myotubularine, protéine codée par le gène MTM1, avec une autre protéine, l’amphiphysine 2 codée par le gène BIN1, également exprimée dans les muscles et impliquée dans des myopathies similaires, l’ équipe Inserm « Physiopathologie des maladies neuromusculaires », avec la collaboration du CNRS, à l’Institut de génétique et de biologie moléculaire et cellulaire (CNRS/Inserm/Université de Strasbourg) a découvert comment ces protéines travaillent ensemble et propose une nouvelle cible thérapeutique. De précédents travaux avaient en effet montré que la myotubularine et l’amphiphysine 2 peuvent interagir physiquement en se liant l’une à l’autre.

Pour explorer le lien fonctionnel entre les deux, les chercheurs ont développé un modèle de souris transgéniques déficitaires en MTM1 et ont croisé ces animaux avec d’autres souris dont certaines n’expriment pas BIN1 et d’autres qui au contraire, surexpriment ce gène. Ils n’ont obtenu aucun animal déficitaire à la fois en MTM1 et BIN1, prouvant qu’au moins l’une des deux protéines est nécessaire au développement des fibres musculaires et à la survie du fœtus. A l’inverse, et c’est la bonne surprise, la surexpression de BIN1 a permis de corriger la myopathie liée au déficit de MTM1 et d’obtenir une espérance de vie équivalente aux animaux sauvages. En analysant de plus près les muscles, les chercheurs ont constaté une organisation et une taille correcte des fibres musculaires avec une bonne adhésion des cellules entre elles. Ils ont donc fait l’hypothèse que MTM1 est un activateur de la protéine bin1 in vivo, et que fournir cette dernière en grande quantité pourrait permettre de se « passer » de MTM1.

Pour vérifier si BIN1 est une bonne cible thérapeutique, ils ont mené dans un second temps une expérience de thérapie génique chez des souris déficitaires en MTM1. Ils ont administré le gène BIN1 humain grâce à un vecteur viral de type AAV par injection systémique (intra-péritonéale) après la naissance des rongeurs. Cette intervention a nettement réduit les symptômes de la maladie et prolongé la survie des souris malades, à hauteur de celle de souris saines.

« Nous avons là la preuve de concept que le gène BIN1 humain présente un potentiel important pour traiter la myopathie myotubulaire liée à un déficit en myotubularine, avec un résultat spectaculaire chez la souris. Nous aimerions maintenant poursuivre ce développement avec des essais précliniques et espérons pouvoir proposer à terme un traitement aux patients actuellement confrontés à un désert thérapeutique », conclut Jocelyn Laporte, responsable de l’équipe Inserm qui a réalisé ces travaux.

Alzheimer : identification d’agrégats de protéines cibles potentielles pour soigner la maladie

Agrégation de la protéine Tau dans la maladie d’Alzheimer. ©Inserm/U837, 2008

 

La propagation des agrégats de la protéine Tau dans le cerveau contribue à la progression de la maladie d’Alzheimer. Des chercheurs du Laboratoire des maladies neurodégénératives : mécanismes, thérapies, imagerie (CNRS/CEA/Université Paris-Sud, MIRCen), en collaboration avec l’Ecole normale supérieure, Sorbonne Université et l’Inserm, viennent d’identifier les cibles de ces agrégats. Publiés dans EMBO Journal le 10 janvier 2019, ces travaux permettront la conception d’outils capables de bloquer ces éléments clés dans la propagation des agrégats et de contrecarrer ainsi leur effet pathologique.

L’agrégation des protéines alpha-synucléine, pour la maladie de Parkinson, et Tau, pour la maladie d’Alzheimer, est intimement liée à la progression de ces pathologies neurodégénératives. Ces agrégats se propagent d’une cellule neuronale à l’autre en se liant aux cellules. Ils se multiplient[1] pendant cette propagation. Il a été montré que la propagation et l’amplification de ces agrégats protéiques sont délétères et contribuent à l’évolution de ces maladies.

La compréhension de la formation de ces agrégats, de leur propagation et de leur multiplication dans les cellules du système nerveux central présente un potentiel thérapeutique : elle permettrait de cibler ces processus et d’agir sur leurs conséquences.

Propagation des protéines

L’étape clé dans la propagation d’agrégats pathogéniques est la fixation d’agrégats provenant de cellules neuronales affectées aux membranes de cellules indemnes. Après avoir identifié les cibles des agrégats pathogéniques de la protéine alpha-synucléine (Shrivastava et al, 2015 EMBO J), l’équipe du Laboratoire des maladies neurodégénératives (CNRS/CEA/Université Paris-Sud, MIRCen, Fontenay-aux-Roses), en collaboration avec l’Ecole normale supérieure, Sorbonne Université et l’Inserm, vient d’identifier les cibles des agrégats de la protéine Tau. Il s’agit de la pompe sodium/potassium et des récepteurs du glutamate, deux protéines essentielles à la survie des neurones. L’expérience a été menée sur des neurones de souris en culture.

Modification des membranes neuronales

Les chercheurs ont également mis en évidence que les agrégats pathogéniques modifient la membrane des neurones en redistribuant les protéines membranaires. L’intégrité membranaire — et plus particulièrement celle des synapses, nœud de communication essentiel entre neurones — est affectée. Ces modifications sont délétères pour les neurones car elles entraînent une communication anormale entre eux ainsi que leur dégénérescence.

Ces travaux expliquent ainsi le dysfonctionnement précoce des synapses et la dégradation de communication normale observés dans les réseaux neuronaux au cours de l’évolution de la maladie.

Vers de nouvelles thérapies

Ils ouvrent aussi la voie à la conception de nouvelles stratégies thérapeutiques fondées sur la protection de l’intégrité synaptique, la restauration de l’activité des récepteurs membranaires de la protéine Tau et l’utilisation de leurres pour empêcher l’interaction délétère entre agrégats pathogènes de la protéine Tau et leurs cibles membranaires. Ces approches thérapeutiques pourront être menées à l’aide de neurones humains puisque les chercheurs du laboratoire viennent de développer ce type de cultures en collaboration avec le laboratoire I-Stem (Institut des cellules souches pour le traitement et l’étude des maladies oncogéniques, AFM-Téléthon/Inserm/Université Evry-Val d’Essonne) et Sorbonne Université. Cette dernière étude est également publiée le 10 janvier 2019, dans Stem Cell Reports[2].

[1] Ils s’amplifient en recrutant les protéines endogènes alpha-synucléine et Tau des cellules affectées pendant cette propagation

[2] Propagation of α-Synuclein strains within human reconstructed neuronal network. Simona Gribaudo, Philippe Tixador, Luc Bousset, Alexis Fenyi, Patricia Lino, Ronald Melki, Jean-Michel Peyrin, Anselme Louis Perrier, Stem Cell Reports, le 10 janvier 2019.

A propos du Laboratoire des maladies neurodégénératives : mécanismes, thérapies, imagerie (LMN), unité de recherche associant le CEA, le CNRS et l’Université Paris-Sud.

Le laboratoire rassemble près de 60 scientifiques dont les thèmes de recherche en neurosciences couvrent les mécanismes de dégénérescences, les modèles animaux, l’imagerie cérébrale, et l’étude de stratégies thérapeutiques géniques, cellulaires et médicamenteuses pour les maladies neurodégénératives, en particulier la maladie d’Alzheimer, la maladie de Parkinson et la maladie de Huntington.

Le LMN est situé au sein de MIRCen (Molecular Imaging Research Center) une installation de recherche préclinique développée par le CEA et l’Inserm. MIRCen est un des départements de l’institut de biologie François Jacob du CEA, sur le site de Fontenay-aux-Roses du CEA Paris-Saclay.

Découverte de nouveaux mécanismes à l’origine de la migraine

©Photo by Anh Nguyen on Unsplash

Des chercheurs du CNRS, d’Université Côte d’Azur et de l’Inserm ont mis en évidence un nouveau mécanisme lié à l’apparition de la migraine. En effet, une mutation génétique induit le dysfonctionnement d’une protéine normalement capable d’inhiber une activité électrique provoquant des crises migraineuses. Leurs résultats, publiés dans la revue Neuron le 17 décembre, ouvrent la piste pour l’élaboration d’antimigraineux.

Alors que 15% de la population adulte dans le monde est touchée par la migraine, aucun traitement curatif efficace sur le long terme n’a pour le moment été mis sur le marché. Les crises migraineuses sont liées, entre autres, à l’hyperexcitabilité électrique des neurones sensoriels. Leur activité électrique est contrôlée par des protéines génératrices de courant appelées canaux ioniques, et notamment par le canal TRESK qui a une fonction inhibitrice sur l’activité électrique. Or, les chercheurs ont montré qu’une mutation du gène codant pour cette protéine entraine sa scission en deux protéines dysfonctionnelles : l’une est inactive et l’autre, en ciblant d’autres canaux ioniques (K2P2.1) stimule fortement l’activité électrique des neurones, provoquant des crises migraineuses.

Si les chercheurs avaient déjà mis en évidence le caractère héréditaire des migraines, ils n’en connaissaient pas le mécanisme. En démontrant que la scission de TRESK induit l’hyperexcitabilité des neurones sensoriels et le déclenchement de la migraine, ces travaux, menés à l’Institut de biologie Valrose (CNRS/Inserm/Université Côte d’Azur), constituent une nouvelle piste de recherche pour l’élaboration d’antimigraineux. Ils font l’objet d’un brevet1 : l’idée est de cibler les canaux K2P2.1 afin de réduire l’activité électrique des neurones, prévenant ainsi le déclenchement de migraines.

De plus, les chercheurs proposent que ce mécanisme inédit, provoquant la formation de deux protéines au lieu d’une seule, soit maintenant considéré pour étudier d’autres maladies liées à des mutations génétiques ainsi que pour leur diagnostic.

 

1 Brevet PCT/EP2018/067581 “Methods and compositions for treating migraine”

Myopathie : un gain de force musculaire chez la souris

Dans la myopathie de Duchenne, les fibres musculaires sont fragilisées et enclenchent des cycles permanents de régénération, un processus soutenu par les cellules souches musculaires. Sur cette photo, lesmyofibres en rouge sont en cours de régénération et sont indicatrices des lésions multiples présentes dans tout le muscle des patients. Le pourtour des myofibres est marqué en vert. Crédit image : Mélanie Magnan/Bénédicte Chazaud/Inserm

Des souris atteintes de dystrophie musculaire de Duchenne récupèrent plus de 20% de force musculaire grâce à la metformine. Ce résultat visant à stopper le processus de remplacement progressif des fibres musculaires par du tissu fibreux caractéristique de cette maladie a été obtenu grâce aux travaux de l’équipe de Bénédicte Chazaud, chercheuse Inserm au sein de l’Unité 1217 de l’Institut NeuroMyoGène (Inserm/CNRS/Université Claude Bernard Lyon 1). Ces travaux sont publiés dans la revue Cell Reports.

Les myopathies dégénératives comme la Dystrophie musculaire de Duchenne (DMD) sont incurables. Elles sont caractérisées par des lésions répétées des fibres du muscle qui déclenchent des cycles de régénération permanents, associés à une inflammation chronique. Ceci conduit sur le long terme à la perte des fibres musculaires, qui sont progressivement remplacées par de la fibrose, c’est-à-dire une augmentation anormale de tissu non fonctionnel (fibres de collagène). Les mécanismes de fibrogenèse sont mal connus dans ce contexte.

Dans cette nouvelle étude, les chercheurs montrent que la fibrose est associée à la présence de cellules immunitaires spécifiques (macrophages pro-inflammatoires) dans le muscle de patients et de souris atteints de myopathie de Duchenne.

Ces macrophages surexpriment une protéine qui est nécessaire à la sécrétion d’un facteur de croissance (TGFβ) principal responsable de la fibrose. Une fois libéré et activé dans l’environnement cellulaire, Le TGFβ stimule la production de collagène par les fibroblastes. Cette création excessive de tissu fibreux peut être endiguée par l’activation d’un régulateur présent dans les macrophages, l’AMP kinase (AMPK), qui diminue leur état pro-inflammatoire. L’activation de l’AMPK, en diminuant l’expression de la protéine nécessaire à la sécrétion du TGFβ, limite donc la fibrose.

Les souris traitées pendant trois semaines par un activateur pharmacologique de l’AMPK, la Metformine, voient la qualité de leurs muscles s’améliorer, y compris fonctionnellement avec un gain de force musculaire. Dans ces conditions, la destruction des fibres musculaires et la création de tissu fibreux diminuent (respectivement -56% et -23%) et surtout la régénération de fibres musculaires augmente (+38%). Chez ces animaux la force mesurée au niveau des muscles entourant le tibia après le traitement augmente de plus de 20%.

Le processus inflammatoire dans le muscle semble identique chez la souris et l’homme or la Metformine est un médicament déjà utilisé chez l’homme. Ces travaux montrent que des approches pharmacologiques ciblant l’inflammation et la fibrose pourraient être envisagées pour améliorer l’état du muscle dans le contexte des myopathies dégénératives, notamment dans le cadre de thérapies cellulaires ou géniques afin d’en augmenter l’efficacité. « Cependant, rappellent les chercheurs, il faut rester précautionneux, il n’est pas question de traiter la myopathie de Duchenne avec la Metformine, mais peut-être, dans un premier temps de diminuer l’état inflammatoire des patients ».

Les chercheurs s’attachent maintenant à disséquer la grande hétérogénéité des populations de macrophages dans cette pathologie, afin d’identifier les « mauvaises » sous-populations pro-fibrosantes des « bonnes » sous-populations réparatrices, aidant à la régénération musculaire.

Les cancers sous pression : visualiser l’action du système immunitaire sur l’évolution des tumeurs

Cancérogenèse : Surexpression de TRF2, marqué en vert, dans les vaisseaux tumoraux, marquage rouge, dans un cancer ovarien. ©Inserm/Wagner, Nicole, 2014

À mesure que les tumeurs se développent, elles évoluent génétiquement. Comment le système immunitaire agit-il en présence de cellules tumorales ? Comment exerce-t-il une pression sur la diversité génétique des cellules cancéreuses ? Des chercheurs de l’Institut Pasteur et de l’Inserm, ont capté par vidéo in vivo l’action des cellules immunitaires lors de la prolifération de cellules cancéreuses, grâce à un marquage élaboré de coloration spécifique. Ces résultats seront publiés le 23 novembre 2018 dans la revue Science Immunology. Au fur et à mesure de leur prolifération incontrôlée, les cellules tumorales accumulent de nouvelles mutations et des modifications de leur génome. Ce processus progressif implique que chez un même patient, il existe une importante diversité génétique parmi les cellules cancéreuses. Si les cellules du système immunitaires et notamment les cellules T peuvent potentiellement éliminer ces cellules anormales, la diversité tumorale peut s’avérer délétère car elle rend difficile l’action du système immunitaire et peut rendre inefficaces certaines thérapies. Comprendre cette course effrénée entre évolution tumorale et réponse immunitaire est la clef du succès des futures immunothérapies. Les chercheurs de l’unité Dynamique des réponses immunes (Institut Pasteur / Inserm), dirigée par Philippe Bousso, en collaboration avec Ludovic Deriano, responsable de l’unité Intégrité du génome, immunité et cancer (Institut Pasteur) ont étudié comment les réponses immunitaires qui se développent spontanément contre les tumeurs modifient cette hétérogénéité tumorale. Ils ont montré par quels mécanismes les réponses immunitaires peuvent réduire très fortement la diversité tumorale et ainsi favoriser l’émergence de cellules tumorales plus homogènes génétiquement. Dans cette étude, les chercheurs sont parvenus à marquer de couleurs différentes chaque sous-clone de cellules cancéreuses chez un modèle murin. En suivant cet éventail de couleurs, ils ont pu ainsi caractériser dans le temps et dans l’espace, l’évolution de l’hétérogénéité tumorale. Ils ont pu de plus observer les contacts qu’ont les cellules T avec les cellules cancéreuses et déterminer comment une partie des cellules tumorales sont détruites. Ces travaux mettent en lumière l’effet drastique que peut avoir le système immunitaire pour façonner la tumeur en réduisant son hétérogénéité. Ce même effet sur l’hétérogénéité des cellules tumorales a également été observé lors de traitements fondés sur la levée de freins du système immunitaire, des immunothérapies dont le développement a été récompensé cette année par le prix Nobel de Médecine et de Physiologie. Ces travaux montrent que la prise en compte des interactions entre immunothérapies et hétérogénéité tumorale pourrait aider à définir les meilleures combinaisons et séquences thérapeutiques.

Visualisation de l’action des cellules immunitaires colorées. Cette vidéo représente en gris les cellules tumorales. En violet, les cellules T spécifiques de la tumeur, ont des contacts avec les cellules cancéreuses et les détruisent. Les cellules tuées apparaissent en bleu. En vert, les cellules de contrôle circulent mais ne tuent pas les cellules tumorales. © Institut Pasteur / Philippe Bousso

Visualisation des différents amas de différents clones de cellules cancéreuses. Cette vidéo illustre comment les sous-clones de la tumeur marqués chacun par une couleur différente (bleu, orange ou vert) se développent au sein de la moelle osseuse. Les vaisseaux apparaissent en blanc. © Institut Pasteur / Philippe Bousso

 
Ces travaux ont été financés en plus des organismes cités plus haut, par la Fondation de France, l’Inca et par l’ERC (European Research Council).

A l’origine de l’asymétrie, une protéine qui donne le tournis

Doigt de migration cellulaire précédé par une cellule leader. En bleu, les noyaux des cellules, en vert, l’actine, en rouge, la myosine. Le câble pluricellulaire d’acto-myosine est bien visible sur les bords du doigt. ©Inserm/Cochet-Escartin, Olivier, 2014

L’asymétrie joue un rôle majeur en biologie, à toutes les échelles : enroulement en spirale de l’ADN, cœur positionné à gauche, préférence pour la main gauche ou la droite… Une équipe de l’Institut de biologie Valrose (CNRS/Inserm/Université Côte d’Azur), en collaboration avec des collègues de l’université de Pennsylvanie, a montré qu’une unique protéine induit le mouvement en spirale d’une autre molécule puis, par effet domino, la torsion des cellules, des organes et du corps entier, jusqu’à déclencher un comportement latéralisé. Ces travaux sont publiés dans la revue Science le 23 novembre 2018.

Notre monde est fondamentalement asymétrique : enroulement de la double hélice d’ADN, division asymétrique des cellules souches, localisation du cœur humain à gauche… Mais comment émergent ces asymétries et sont-elles liées les unes aux autres ?

À l’Institut de biologie Valrose l’équipe du chercheur CNRS Stéphane Noselli comprenant aussi des chercheurs de l’Inserm et de l’Université Cote d’Azur étudie depuis plusieurs années l’asymétrie droite-gauche afin de résoudre ces énigmes. Ces biologistes avaient identifié le premier gène contrôlant cette asymétrie chez la mouche du vinaigre (drosophile), l’un des organismes modèles préférés des biologistes. Plus récemment, l’équipe a montré que ce gène joue le même rôle chez les vertébrés : la protéine qu’il produit, la myosine 1D[1], contrôle l’enroulement ou la rotation des organes dans le même sens.

Dans cette nouvelle étude, les chercheurs ont induit la production de myosine 1D dans des organes normalement symétriques de la drosophile, comme les trachées respiratoires. De façon spectaculaire, cela a suffi à induire une asymétrie à tous les niveaux : cellules déformées, trachées s’enroulant sur elles-mêmes, organisme entier torsadé, et comportement de nage hélicoïdale des larves de mouches. Chose remarquable, ces nouvelles asymétries se développent toujours dans le même sens.

Afin d’identifier l’origine de ces effets en cascade, des biochimistes de l’université de Pennsylvanie ont apporté leur concours : ils ont mis en présence, sur une lame de verre, la myosine 1D et un composant du « squelette » des cellules, l’actine. Ils ont alors pu constater que l’interaction des deux protéines entraine un mouvement en spirale de l’actine.

Outre son rôle dans l’asymétrie droite-gauche chez la drosophile et les vertébrés, la myosine 1D apparaît donc comme une protéine unique capable à elle seule d’induire l’asymétrie à toutes les échelles, d’abord au niveau moléculaire, puis, par effet domino, cellulaire, tissulaire et comportemental.

Ces résultats suggèrent un mécanisme possible d’apparition soudaine de nouveaux caractères morphologiques au cours de l’évolution, comme par exemple la torsion du corps des escargots. La myosine 1D aurait toutes les caractéristiques requises pour l’émergence de cette innovation, puisque son expression suffit à elle seule à induire la torsion à toutes les échelles.

[1] Les myosines sont une classe de protéines qui interagissent avec l’actine (constituant du squelette des cellules ou cytosquelette). La plus connue d’entre elles, la myosine musculaire, est responsable de la contraction musculaire.

Résistance aux antidépresseurs : des neurones capables de s’autoréguler

Neurones de l’hippocampe d’une souris observés en microscopie confocale à fluorescence puis reconstruits en 2D. Crédits: Inserm/CNRS/IGMM/Loustalot,Fabien/Kremer,Eric

Pourquoi certains patients déprimés présentent-ils une résistance quasi-totale aux antidépresseurs les plus courants ? C’est sur cette question que se sont penchés des chercheurs de l’Inserm et de Sorbonne Université au sein de l’Institut du Fer à Moulin qui ont pu mettre en évidence le rôle majeur des neurones sécréteurs de sérotonine – la cible médicamenteuse privilégiée dans les dépressions – dans la régulation de leur propre activité. En cause, un récepteur à la sérotonine porté par ces neurones dont la déficience pourrait être déterminante dans l’absence de réponse aux antidépresseurs les plus prescrits. Ces travaux, parus dans la revue Neurospychopharmacology ouvrent la voie à une meilleure compréhension de l’implication de la sérotonine dans les maladies psychiatriques.

La sérotonine est un neurotransmetteur – une substance chimique produite par certains neurones pour en activer d’autres – impliqué dans de nombreuses maladies psychiatriques telles que la dépression, l’addiction, l’impulsivité ou la psychose. Elle est sécrétée par des neurones spécifiques appelés neurones sérotoninergiques.

La libération de sérotonine hors de la cellule neuronale permet d’activer des neurones possédant des récepteurs spécifiques à ce neurotransmetteur. Lorsque ces récepteurs détectent une quantité suffisante de sérotonine dans le milieu extracellulaire, ils envoient un message d’activation ou d’inhibition au neurone qui les exprime. Les neurones sérotoninergiques possèdent également plusieurs types de récepteur à la sérotonine, qu’on appelle alors autorécepteurs et qui leur permettent d’autoréguler leur activité.

Des chercheurs de l’Inserm et de Sorbonne Universités/UPMC au sein de l’Institut du Fer à Moulin (Inserm, UPMC),  se sont intéressés au rôle d’un des autorécepteurs des neurones sérotoninergiques appelé 5-HT2B, dans la régulation de leur activité, afin de mieux comprendre l’absence d’effet de certains traitements antidépresseurs.

En temps normal, lorsqu’un neurone sérotoninergique sécrète de la sérotonine dans le milieu extracellulaire, il va être capable d’en recapturer une partie qu’il pourra de nouveau relarguer a posteriori.  Ce mécanisme assuré par un transporteur spécifique lui permet de réguler la quantité de sérotonine présente dans le milieu extracellulaire. Le transporteur est la cible privilégiée des médicaments antidépresseurs utilisés pour traiter les pathologies psychiatriques impliquant la sérotonine. Ceux-ci sont appelés « inhibiteurs sélectifs de la recapture de la sérotonine » (ISRS) car ils empêchent la recapture par le transporteur. Dans le contexte de la dépression où la sécrétion de la sérotonine est trop réduite, les ISRS permettent donc de conserver une concentration normale de sérotonine dans le milieu extracellulaire.

L’équipe de recherche est partie de l’observation que, chez la souris, lorsque le neurone sérotoninergique ne porte pas d’autorécepteur 5-HT2B, d’une part l’activité des neurones  sérotoninergiques est inférieure à la normale et d’autre part les molécules bloquant l’activité du transporteur comme les antidépresseurs ISRS sont sans effet sur la quantité extracellulaire de sérotonine. Les chercheurs ont ainsi montré que pour avoir un effet, ces molécules nécessitaient la présence et une expression normale du récepteur 5-HT2B à la sérotonine.

Ils ont également découvert que lorsqu’un neurone sécrète de la sérotonine, son autorécepteur 5-HT2B détecte la quantité présente dans le milieu extracellulaire et envoie un signal au neurone pour qu’il sécrète d’avantage de sérotonine. Pour éviter une sécrétion excessive de sérotonine, le neurone sérotoninergique possède un régulateur négatif : l’autorécepteur 5-HT1A qui détecte également la quantité de sérotonine extracellulaire et va envoyer un signal d’inhibition de la sécrétion au neurone sérotoninergique. Afin de conserver une activité neuronale normal, 5-HT2B permet de maintenir ainsi un certain niveau d’activité, en agissant comme un autorégulateur positif.

Ces résultats, à confirmer chez l’humain, mettent en évidence un mécanisme d’autorégulation fine des neurones sérotoninergiques avec une balance entre des autorécepteurs activateurs et des autorécepteurs inhibiteurs. Ils constituent une avancée dans l’identification de nouvelles cibles médicamenteuses,  dans la compréhension de l’implication de la sérotonine dans certaines pathologies psychiatriques et dans l’appréhension de l’inefficacité de certains traitements antidépresseurs.

Selon le sexe et l’âge, les cellules immunitaires du cerveau réagissent différemment à des perturbations du microbiote

©AdobeStock

Une étude conjointe entre des chercheurs Inserm de l’IBENS (Institut de biologie de l’Ecole Normale Supérieure – Inserm/CNRS/ENS Paris) à Paris et des chercheurs du SIgN (Singapore Immunology Network, A*STAR) de Singapour montre un rôle inédit du microbiote sur des cellules immunitaires du cerveau dès le stade fœtal. Ces cellules immunitaires, les microglies, jouent un rôle clé dans le développement et le fonctionnement cérébral et sont différemment perturbées par des modifications du microbiote chez les souris mâles et femelles à différents stades de la vie. Les résultats de ces travaux sont publiés dans la revue Cell.

Les microglies sont des cellules immunitaires qui répondent à des traumatismes ou des signaux inflammatoires pour protéger le cerveau, agissant comme des senseurs capables de détecter de nombreux signaux environnementaux. Ces cellules immunitaires sont également impliquées dans différentes étapes du développement et du fonctionnement cérébral. Ainsi, des dysfonctionnements de ces cellules sont associés à un large spectre de pathologies humaines, allant des troubles neuro-développementaux jusqu’aux maladies neurodégénératives. Les microglies jouent donc un rôle crucial dans le fonctionnement normal et pathologique du cerveau, ce qui laisse suggérer qu’elles constituent une interface régulatrice entre les circuits cérébraux et l’environnement. 

Pour tester cette hypothèse, Morgane Thion et Sonia Garel, chercheuses Inserm, et leurs collaborateurs, ont utilisé une approche multidisciplinaire sur des modèles de souris axéniques, qui n’ont pas de microbiote (ensemble des bactéries présentes dans l’organisme) et des modèles de souris adultes traitées avec un cocktail d’antibiotiques (qui détruisent de façon aigue le microbiote). En combinant analyses génomiques globales et études histologiques, les chercheurs ont montré que les microglies sont profondément affectées par un dysfonctionnement du microbiote, dès les stades prénataux et ce, en fonction du sexe de l’animal : les microglies appartenant à des mâles semblent affectées au stade prénatal alors que les microglies issues de femelles le sont à l’âge adulte. Ce surprenant dimorphisme sexuel fait écho au fait que l’occurrence de nombreuses pathologies neurodéveloppementales est plus élevée chez les hommes alors que les maladies auto-immunes sont plutôt prévalentes chez les femmes.

Si les mécanismes impliqués et les conséquences fonctionnelles restent à découvrir, cette étude révèle un rôle clé des microglies à l’interface entre environnement et cerveau et montre que les mâles et femelles auraient des susceptibilités différentes à des altérations du microbiote. Pour les auteurs, ces éléments mériteraient maintenant d’être pris en considération au niveau clinique et ce, dès les stades fœtaux.

Un champignon comestible prometteur pour la lutte contre des maladies génétiques humaines

Crédit @ MNHN/CNRS – Christine Bailly

Un banal champignon pourrait-il aider à combattre certaines maladies génétiques ? Si surprenante soit-elle, c’est bien la découverte que viennent de faire des chercheurs français de l’Inserm, du Muséum national d’Histoire naturelle, du CNRS, de l’Université de Lille et de l’Institut Pasteur de Lille[1]. En passant au crible de nombreux extraits, les chercheurs ont ainsi mis en évidence une activité significative d’un extrait du champignon Lepista inversa, sur trois lignées cellulaires isolées de patients atteints de mucoviscidose. Ces travaux sont publiés dans la revue Plos One.

Environ 10% des malades atteints de maladies génétiques rares, telles que la mucoviscidose ou la myopathie de Duchenne, (ou plus fréquentes comme certains cancers), sont porteurs d’une mutation non-sens, c’est-à-dire d’un changement dans la séquence de l’ADN. Cette mutation se traduit par la présence d’un « codon stop » qui ne code aucun acide aminé connu et arrête prématurément la synthèse des protéines issues des gènes mutés. Dès lors, les protéines obtenues sont tronquées et dysfonctionnent. Incapables d’assurer leur rôle au sein de l’organisme, elles entrainent les conséquences délétères que l’on connaît : obstruction des bronches et incapacité respiratoire dans la mucoviscidose et destruction des muscles dans la myopathie.

Plusieurs stratégies sont aujourd’hui développées pour corriger les conséquences d’une mutation non-sens. La translecture est une des pistes parmi les plus prometteuses. Elle consiste à ce que la machinerie cellulaire continue la synthèse de la protéine malgré la présence d’un « codon stop » dans l’ADN. Pour cela, au moment de la transformation de l’ARN en protéine, des molécules « leurre » situées dans l’environnement très proche de la machinerie cellulaire peuvent tromper sa vigilance et permettre, comme si de rien n’était, la fabrication d’une protéine complète. Néanmoins, les molécules capables de jouer ce rôle et identifiées jusqu’à présent ont une efficacité très limitée et/ou une toxicité importante.

@ Extrait du journal Médecine sciences https://doi.org/10.1051/medsci/2012282018

En alliant leurs savoir-faire et grâce à l’utilisation d’un système de criblage sur la chimiothèque-extractothèque du Muséum national d’Histoire naturelle, deux équipes de scientifiques[2] ont réussi à montrer que l’extrait d’un champignon, Lepista inversa ou clitocybe inversé, est capable de restaurer très efficacement l’expression de gènes humains présentant des mutations non-sens sur des cellules en culture.

Une activité significative a aussi été mise en évidence sur des cellules de patients atteints de mucoviscidose[3] grâce à la collaboration des deux laboratoires de recherche avec le CHU de Lille, Les Hospices Civils de Lyon, l’hôpital Cochin et l’association Vaincre la Mucoviscidose.

« Quand on sait que restaurer 5% de protéines fonctionnelles dans la mucoviscidose pourrait avoir un impact sur les conséquences de la maladie, ces travaux sont extrêmement encourageants. » Estiment les auteurs qui précisent que cette stratégie présente aussi l’avantage de ne pas toucher au patrimoine génétique des patients.

« Cette découverte est porteuse d’espoir car ce champignon, bien que non prisé pour ses qualités gustatives, est comestible ; il est de plus très courant – il pousse en Ile-de-France et dans diverses régions de France et d’Europe. » explique Fabrice Lejeune, chercheur à l’Inserm et dernier auteur de ce travail. Les étapes pour aboutir à une réelle stratégie thérapeutique sont encore longues » nuance-t-il. « Il faut encore que l’on arrive à purifier les molécules d’intérêt présentes dans cet extrait puis les tester in vivo pour contrôler leur efficacité sur le long terme et l’absence de toxicité. »

Cette étude pluridisciplinaire montre également l’intérêt de la collection d’extraits conservée dans l’extractothèque du Muséum pour des équipes de biologistes et de chimistes travaillant dans le domaine de la santé.

[1] Laboratoire Mécanismes de la Tumorigenèse et Thérapies Ciblées (CNRS, Université de Lille, Institut Pasteur de Lille) et laboratoire Molécules de Communication et Adaptation des Microorganismes (MNHN, CNRS)

[2] Laboratoire Mécanismes de la Tumorigenèse et Thérapies Ciblées (CNRS, Université de Lille, Institut Pasteur de Lille) et laboratoire Molécules de Communication et Adaptation des Microorganismes (MNHN, CNRS)

fermer