Menu

Comprendre la capacité du poisson-zèbre à reconstituer sa nageoire ouvre des pistes pour les progrès de la médecine régénérative

zebra fish _ poisson zèbre

Le poisson-zèbre, aussi appelé Danio rerio, est une espèce tropicale couramment utilisée dans les laboratoires de recherche en tant qu’organisme modèle. © Adobe Stock

 

Dans le règne animal, plusieurs espèces partagent l’extraordinaire capacité de régénérer leurs membres ou leurs appendices suite à une amputation. Parmi elles, le poisson-zèbre est particulièrement étudié dans les laboratoires de recherche, en raison de sa capacité à régénérer sa nageoire caudale. Ce phénomène est rendu possible par la formation d’un blastème, une structure transitoire composée de cellules indifférenciées, qui amorce et contrôle la régénération du tissu. Mieux comprendre les cellules qui composent le blastème et décrypter leurs interactions, c’est ouvrir la voie à une meilleure compréhension des processus de régénération, avec l’ambition de développer des applications cliniques dans le domaine de la médecine régénérative. Dans une étude publiée dans Nature Communications, des scientifiques de l’Inserm et de l’Université de Montpellier ont fait un pas en avant vers cet objectif, en identifiant au sein du blastème, la population cellulaire qui orchestre le processus de régénération chez le poisson-zèbre.

Le poisson-zèbre, aussi appelé Danio rerio, est une espèce tropicale couramment utilisée dans les laboratoires de recherche en tant qu’organisme modèle, depuis la fin des années 1990. Il présente en effet de nombreux intérêts pour les scientifiques, tels que la transparence de l’embryon et son développement externe, plus facile à observer que celui des mammifères. Par ailleurs, 70% des gènes présents chez l’Homme trouvent un homologue chez le poisson-zèbre. Cette conservation génétique avec les autres vertébrés fait du Danio rerio, un modèle de choix pour décrypter plusieurs processus biologiques majeurs et leur conservation au fil de l’évolution.

De manière surprenante, le poisson-zèbre est aussi capable de régénérer sa nageoire caudale lorsque celle-ci a été amputée, grâce à la formation transitoire d’une masse de cellules appelée « blastème ».

Au stade larvaire, cette structure assure la régénération de l’appendice sectionné en seulement trois jours : de quoi susciter l’intérêt de la communauté scientifique, car la compréhension des mécanismes qui sont associés à ce processus pourrait ouvrir la voie à des applications multiples dans le domaine de la médecine régénérative.

Cependant, seules quelques cellules du blastème avaient été décrites jusqu’ici et les mécanismes biologiques sous-jacents demeuraient mal documentés. Dans leurs précédents travaux, Farida Djouad, directrice de recherche à l’Inserm, et son équipe avaient mis en évidence le rôle inédit des macrophages, cellules du système immunitaire, lors de la formation du blastème des poissons-zèbres. L’équipe avait ainsi prouvé que les macrophages orchestrent les processus inflammatoires nécessaires à la prolifération des cellules du blastème et à la régénération de la nageoire caudale.

 

Identifier la cellule chef d’orchestre de la régénération

Dans leur nouvelle étude, ces chercheurs ont été plus loin dans l’exploration du blastème et ont révélé l’implication majeure d’une nouvelle population cellulaire, les cellules dérivées de la crête neurale[1]. Ces cellules sont présentes chez tous les vertébrés, y compris chez l’espèce humaine, et jouent notamment un rôle clé dans le développement de l’embryon.

Les scientifiques ont déployé plusieurs approches méthodologiques pour observer et suivre le devenir des cellules du blastème. En combinant notamment l’imagerie confocale en temps réel et la technologie de séquençage de cellule unique (single cell RNA-seq)[2] sur des larves de poisson-zèbre, l’équipe de Montpellier est parvenue à démontrer que les cellules dérivées de la crête neurale orchestrent le processus de régénération de la nageoire, en dialoguant avec les macrophages et avec les autres cellules du blastème afin de contrôler et de réguler leur réponse. Ce dialogue se fait notamment via un facteur clé appelé NRG1 (Neuregulin 1).

Interactions entre les macrophages (en rouge) et les cellules de la crête neurale (en vert) au cours de la régénération de la nageoire caudale de la larve de zebrafish. © Farida Djouad

L’ensemble de ces données permet d’aller plus loin dans la compréhension des processus de régénération et de leur activation chez le poisson-zèbre. En s’appuyant sur ces résultats, l’objectif suivant sera de comprendre pourquoi les mammifères, qui pourtant possèdent aussi des macrophages et des cellules dérivées de la crête neurale, ne parviennent pas à régénérer leurs appendices comme le poisson-zèbre.

« Nous continuons ces travaux sur d’autres modèles de vertébrés, notamment la souris, afin de mieux comprendre à quel moment du développement embryonnaire les mammifères perdent cette capacité de régénération, et pour quelle raison, tout en focalisant notre intérêt sur le rôle des cellules dérivées de la crête neurale », explique Farida Djouad.

 « Les travaux menés sur plusieurs modèles animaux capables de régénération ont pour but d’identifier « LA » cellule chef d’orchestre, commune à tous les processus de régénération. Une meilleure compréhension de son rôle, et surtout des facteurs qu’elle sécrète pourrait ouvrir la voie à de nouvelles pistes pour promouvoir la régénération de certains tissus dans le traitement de maladies dégénératives comme l’arthrose par exemple ».

 

[1] La crête neurale des vertébrés est une structure embryonnaire transitoire, impliquée dans le développement, capable de produire nombre de tissus de la face et du crâne, en particulier le squelette cartilagineux et ostéo-membraneux, les méninges, les parois vasculaires du système carotidien externe et interne, le derme… Source : Académie de médecine

[2] Le séquençage de cellule unique s’appuie sur un ensemble de méthodes de biologie moléculaire pour analyser l’information génétique (ADN, ARN, épigénome…) à l’échelle d’une seule cellule.

Les cellules souches hématopoïétiques se déforment pour se différencier

Le réseau de microtubules (en jaune) d'une CSH (à gauche) s'est "branchée" sur une cellule de la moelle osseuse (à droite).

Le réseau demicrotubules (en jaune) d’une CSH (à gauche) s’est « branchée » sur une cellule de la moelle osseuse (à droite). © Manuel Thery/CEA

 
Une équipe conjointe CEA et Inserm, avec le soutien de l’Hôpital Saint-Louis, de l’Université Paris Diderot et de la Fondation Bettencourt Schueller, a pu observer le début de la différenciation de cellules souches en cellules du sang. En s’appuyant sur une « moelle osseuse sur puce », les chercheurs ont mis en contact des cellules souches avec d’autres types de cellules présentes dans la moelle osseuse. Résultat : certaines d’entre elles changent de forme et d’architecture intérieure. Une découverte inattendue qui ouvre des pistes nouvelles pour étudier de nombreuses maladies du sang. Les résultats de cette étude paraissent dans The journal of Cell Biology lundi 1er novembre.

Les cellules souches
hématopoiétiques (CSH), présentes dans la moelle osseuse, sont à l’origine de toutes les cellules du sang (macrophages, lymphocytes, neutrophiles, globules rouges, plaquettes, etc.). Le moindre défaut dans ce processus de différenciation peut entrainer des maladies graves (leucémies, déficit immunitaire, lymphopénies, myélodisplasies). Mais ces erreurs sont difficiles à étudier car les CSH opèrent au cœur de la moelle osseuse, un terrain difficile à observer en raison de l’opacité de l’os.
 
Pour y parvenir, les chercheurs du CEA ont mis au point une puce microfluidique transparente avec différents compartiments contenant chacun des types cellulaires présents dans la moelle. Or, en y injectant les CSH via des micro-canaux, les chercheurs ont découvert que celles-ci se déplacent et rendent « visite » aux cellules qui tapissent la structure de l’os.
Puce microfluidique
 
En zoomant sur la structure interne des CSH, les chercheurs constatent que le noyau des CSH non différenciées ou destinées à devenir des lymphocytes (voie lymphoïde) est entouré de façon homogène par les constituants du cytosquelette (microtubules). En revanche, le noyau des CSH destinées à devenir des macrophages ou des cellules dendritiques (voie myéloïde) est comme étranglé et fortement déformé. Les biologistes montrent alors que l’architecture intérieure des cellules dirige la différenciation des CSH (publication précédente).

Lorsque les CSH arrivent au contact des cellules de la moelle osseuse, il se produit un phénomène totalement inattendu : elles s’ancrent et s’allongent en réorganisant totalement leur architecture intérieure.

Pour mieux comprendre ce nouveau mécanisme de « polarisation » des CSH sur les cellules osseuses, les chercheurs ont réalisé une nouvelle puce comprenant un réseau de micropuits, permettant le contact entre une cellule de moelle et une CSH uniques. La polarisation des CSH peut alors être observée sous différents angles.

Cette découverte, ainsi que le développement de « moelles osseuses sur puce » qui l’a permise, ouvrent de toutes nouvelles voies de recherche sur les maladies liées à des dysfonctionnements des cellules souches hématopoïétiques, et en particulier les leucémies.

Les cellules souches leucémiques se polarisent-elles normalement au contact de la moelle ? Si ce n’est pas le cas, quel est l’impact de ce défaut sur la prolifération des cellules cancéreuses ? Les puces permettront d’analyser l’effet de nouveaux composés sur la migration, l’ancrage, la polarisation et la prolifération des cellules souches et des cellules tumorales et ainsi d’identifier de futurs médicaments.

De nouvelles perspectives thérapeutiques pour les patients porteurs d’anomalies lymphatiques liées à une mutation du gène PIK3CA

Anatomie 3d du système lymphatique © Fotalia

Anatomie 3d du système lymphatique © Fotalia

 

L’équipe du service de néphrologie-transplantation rénale adultes de l’hôpital Necker-Enfants malades AP-HP, de l’Inserm et d’Université de Paris a mené des travaux, coordonnés par le Pr Guillaume Canaud, qui ouvrent de nouvelles perspectives thérapeutiques pour les patients porteurs d’anomalies lymphatiques liées à une mutation du gène PIK3CA.

Les résultats de cette étude ont fait l’objet d’une publication le 6 octobre 2021 au sein de la revue Science Translational Medicine.

Les malformations lymphatiques, anciennement appelées lymphangiomes, sont des malformations du système lymphatique qui peuvent être localisées (cutanées, sous cutanées ou muqueuses) ou plus rarement étendues à l’ensemble du corps. Elles sont le plus souvent congénitales et visibles avant l’âge de 2 ans. Elles sont fréquemment localisées dans les régions axillaire et cervicale. Ces malformations peuvent s’accompagner de « poussées inflammatoires » douloureuses, de compression d’organes, notamment de la trachée nécessitant alors la mise en place d’une trachéotomie, d’épanchements diffus dans la plèvre ou d’infection grave. Elles peuvent parfois menacer le pronostic vital. Ces malformations ont très souvent un important retentissement esthétique et un fort impact sur l’insertion des patients dans la société.

Dans l’immense majorité des cas, les malformations lymphatiques sont dues à une mutation du gène PIK3CA acquise au cours du développement embryonnaire (in utero). Les traitements actuels reposent sur des scléroses percutanées guidées par la radiologie et/ou des chirurgies souvent délabrantes. Elles peuvent être associées à des soins de support tels que des corticoïdes pour traiter les poussées inflammatoires, des antalgiques, des antibiotiques, une assistance respiratoire nocturne et un soutien nutritionnel et psychologique. Dans certains cas, un traitement immunosuppresseur, la rapamycine sirolimus, est utilisé avec une efficacité variable. Il n’y a aucun traitement approuvé dans cette indication pour le moment.

Le travail de recherche qui vient d’être publié dans la revue Science Translational Medicine ouvre de nouvelles perspectives thérapeutiques pour ces patients porteurs d’anomalies lymphatiques liées à une mutation du gène PIK3CA.

De nouvelles perspectives thérapeutiques pour les patients porteurs d’anomalies lymphatiques liées à une mutation du gène PIK3CA  >> voir la vidéo

 

 

L’équipe a créé le premier modèle murin porteur d’une mutation du gène PIK3CA spécifiquement dans les vaisseaux lymphatiques qui récapitule les différents types de malformations lymphatiques présentées par les patients. Ce modèle expérimental peut développer selon les besoins des malformations très localisées ou au contraire très diffuses.

L’équipe a ensuite identifié l’alpelisib (BYL719), inhibiteur spécifique de PIK3CA, et démontré son rôle comme molécule thérapeutique d’intérêt dans ce modèle préclinique. Fort de résultats très prometteurs chez l’animal, les chercheurs ont ensuite traité six patients, trois enfants et trois adultes, présentant des malformations lymphatiques sévères secondaires à une mutation PIK3CA, ayant résisté aux traitements conventionnels. 

En six mois, le traitement par alplesib s’est accompagné d’une amélioration des symptômes des patients (douleurs, poussées inflammatoires, suintements, gêne à la déglutition…) et d’une réduction de 48% du volume des malformations mesurées en IRM. Comme précédemment rapporté dans une autre indication, le traitement a été bien toléré.

Ce travail, grâce au nouveau modèle expérimental créé, permet de mieux comprendre la physiopathologie des malformations lymphatiques mais ouvre surtout de nouvelles perspectives thérapeutiques très prometteuses.

Ce travail de recherche a été soutenu par :

-European Research Council (CoG 2020 grant number 101000948 and PoC-2016 grant number 737546)

-Agence Nationale de la Recherche – Programme d’Investissements d’Avenir (ANR-18-RHUS-005)

-Agence Nationale de la Recherche – Programme de Recherche Collaborative (19-CE14-0030-01).

-CLOVES SYNDROME COMMUNITY (West Kennebunk,USA)

-Emmanuel BOUSSARD Foundation (London, UK)

-Fondation DAY SOLVAY (Paris, France) Fondation TOURRE (Paris, France)

-Fondation BETTENCOURT SCHUELLER (Paris, France)

-Fondation Simone et Cino DEL DUCA (Paris, France)

-Fondation Line RENAUD-Loulou GASTE (Paris, France)

-Fondation Schlumberger pour l’Éducation et la Recherche (Paris, France)

-Inserm

-Assistance Publique – Hôpitaux de Paris

-Université de Paris

-Et de nombreux autres généreux donateurs

La persistance de cellules mémoires B résistantes au rituximab contribue aux rechutes des patients adultes atteints de thrombopénie immunologique

lymphocytes B

Image d’un centre germinatif persistant (rate de souris, 4 mois après immunisation), comportant des lymphocytes B ou cellules B à mémoire (vert), en forte interaction avec des cellules folliculaires dendritiques (CD35, rouge), et des cellules T helper folliculaires (CD4, bleu). ©Inserm/Reynaud, Claude-Agnès

Des équipes du Pr Matthieu Mahévas du centre de référence des cytopénies auto-immunes de l’adulte et de l’Institut Mondor de Recherche Biomédicale (hôpital Henri-Mondor AP-HP/Inserm/Université Paris-Est Créteil), du Pr Jean-Claude Weill et du Dr Claude-Agnès Reynaud au sein de l’Institut Necker-Enfants Malades (Inserm/CNRS/Université de Paris) ont étudié la présence de lymphocytes B mémoires auto réactifs avant et après traitement par rituximab de patients adultes atteints de thrombopénie immunologique (PTI), une maladie auto-immune rare.

Les résultats de cette étude, qui fait l’objet d’une publication dans la revue Science Translational Medicine le 14 avril 2021, montrent notamment qu’une fraction des lymphocytes B mémoires auto-réactifs envers les antigènes plaquettaires résiste au traitement par rituximab, persiste dans la rate pendant plusieurs mois et participe aux rechutes. La découverte de ces cellules pourrait ouvrir de nouvelles pistes thérapeutiques.    

Les patients atteints de maladies auto-immunes médiées par les cellules B, telles que la thrombopénie immunologique (PTI), peuvent bénéficier d’un traitement par l’anticorps anti-CD20, ciblant les cellules B, le rituximab. Une proportion importante de patients rechute cependant après ce traitement.

Les équipes du Pr Matthieu Mahévas du service de médecine interne de l’hôpital Henri-Mondor AP-HP (Pr Godeau et Pr Michel), de l’unité de recherche « Transfusion et maladies du globule rouge » de l’Institut Mondor de Recherche Biomédicale (UPEC/Inserm), du Pr Jean-Claude Weill et du Dr Claude-Agnès Reynaud de l’Institut Necker-Enfants Malades (Inserm/CNRS/Université de Paris), en collaboration avec de nombreux cliniciens du Centre National des cytopénies auto-immunes de l’adulte (CERECAI), ont cherché à comprendre pourquoi en étudiant la présence de lymphocytes B mémoires réactifs envers les plaquettes dans la rate de patients splénectomisés pour une rechute de thrombopénie immunologique après un traitement par rituximab.

Plusieurs approches expérimentales innovantes ont été menées par les Dr Crickx et Chappert afin de déterminer le phénotype, le programme transcriptionnel et la spécificité de ces cellules B capables de secréter des anticorps anti-plaquettes dans la rate des patients lors des rechutes. Ces travaux ont permis de mettre en évidence que des cellules nouvellement générées après reconstitution lymphocytaire B et des cellules mémoires ayant résisté au traitement participaient aux rechutes.

Il apparait ainsi que ces cellules pathogéniques, résistantes au rituximab, ont perdu l’expression du CD20 à leur surface mais conservées l’expression du CD19, spécifiquement exprimée par les lymphocytes B, qui pourrait donc constituer une nouvelle cible thérapeutique potentielle dans cette maladie.

La persistance de la mémoire immunitaire est généralement étudiée pour le bénéfice qu’elle apporte en termes de protection anti-infectieuse. Ce travail démontre que des cellules mémoires peuvent également persister durant des périodes de rémission d’une maladie auto-immune et contribuer aux rechutes ultérieures, suggérant de nouvelles voies à explorer pour favoriser des rémissions prolongées au cours des maladies auto-immunes.

Ces travaux ont bénéficié d’un financement ANR (Auto-Immuni-B – ANR-18-CE15-0001).

Maladie de Huntington : L’alliance de la génomique et de l’intelligence artificielle met en avant un rôle central des pertes de résilience neuronale

Huntingto

Modélisation mathématique des réponses moléculaires dans les cellules du cerveau à partir de données génomiques obtenues dans un modèle murin de la maladie de Huntington. © Brain-C Lab

L’équipe de recherche (Sorbonne Université/Inserm/CNRS), dirigée par Christian Néri, directeur de recherche Inserm à l’Institut de biologie Paris-Seine, en collaboration avec le MIT (USA), vient de montrer que la perte des mécanismes de compensation et de résilience neuronale à la maladie de Huntington serait le moteur principal de l’évolution de cette maladie au niveau moléculaire. Publiés dans eLife le 23 février 2021 et basés sur une méthode originale d’apprentissage automatique pour l’analyse précise de gros volumes de données génomiques obtenues dans des modèles de la maladie, ces travaux suggèrent que rétablir la résilience neuronale est une piste thérapeutique importante pour une intervention précoce afin de lutter contre cette maladie.

Les cellules de notre corps sont naturellement capables de résister aux maladies grâce à l’homéostasie cellulaire, une série de mécanismes adaptatifs qui réparent les dommages cellulaires, impliquant des centaines de gènes qui rendent nos cellules résilientes. Bien que l’homéostasie recèle un grand potentiel de protection des neurones dans le vieillissement et les maladies neurodégénératives, l’importance et la dynamique des mécanismes homéostatiques dans les maladies neurodégénératives sont restées insaisissables en raison des difficultés d’étude de différents types de cellules dans le cerveau des mammifères.

Récemment, des technologies de criblage génomique ont été utilisées pour interroger comment les différentes cellules du cerveau utilisent des centaines de gènes pour moduler les processus neurodégénératifs. La complexité de ces données les rend cependant difficiles à analyser. En collaboration avec l’équipe de Myriam Heiman au MIT qui a obtenu ces données aux USA et le Laboratoire Jacques-Louis Lions (Sorbonne Université/CNRS), l’équipe de recherche a développé une approche mathématique capable d’identifier précisément les groupes de gènes utilisés dans le cerveau de modèles murins pour contrer les effets toxiques de la huntingtine mutante, le gène de la maladie de Huntington (MH), au fil du temps et dans plusieurs types de neurones composant le striatum, une région du cerveau fortement affectée par la maladie de Huntington.

Les scientifiques ont testé si la mort neuronale dans cette maladie serait principalement due au renforcement des réponses pathogènes ou à la perte des réponses homéostatiques. Répondre à cette question pourrait considérablement modifier notre point de vue sur la meilleure façon de contrer la progression de la maladie de Huntington. Cela pourrait fournir des biomarqueurs pour savoir si une intervention thérapeutique protège le cerveau en bloquant la pathogenèse ou en augmentant l’homéostasie, améliorant ainsi la précision des études précliniques. 

Pour ce faire, ils ont mis au point Geomic, une méthode d’apprentissage automatique basée sur la géométrie des données génomiques permettant d’analyser la forme (courbes, surfaces) de l’expression des gènes, et de cartographier la dynamique temporelle des réponses homéostatiques et pathogéniques. De manière inattendue, cette carte montre que la plupart des réponses pathogéniques sont atténuées avec le temps et, qui plus est, que la plupart des réponses homéostatiques diminuent.

Ces résultats suggèrent que la mort neuronale dans la maladie de Huntington serait principalement due à la perte des réponses moléculaires homéostatiques et non au renforcement des réponses moléculaires pathogéniques, soulignant l’importance des processus homéostatiques dans l’évolution de la maladie.

 Ces résultats apportent un cadre conceptuel pour explorer le développement de stratégies thérapeutiques axées sur le rétablissement des capacités de résistance des cellules cérébrales à la maladie de Huntington. Ils fournissent une feuille de route pour sélectionner des cibles thérapeutiques pour rétablir la résilience neuronale et des biomarqueurs pour surveiller si les médicaments émergents peuvent engager des mécanismes homéostatiques pour être efficaces, et pour utiliser ces outils dans des modèles expérimentaux de cette maladie. Les conclusions ouvrent la voie à des applications de Geomic à l’analyse des données ‘omiques’ dans plusieurs autres maladies, notamment d’autres maladies neurodégénératives. 

Une avancée majeure dans la compréhension de la prédisposition du nouveau-né aux méningites à streptocoque du groupe B

 

 

 

Chaque année à travers le monde, des milliers de nourrissons sont affectés par les méningites à streptocoques du groupe B. Souvent mortelle, la maladie peut aussi entraîner de lourdes séquelles chez les bébés qui survivent. Les adultes sont néanmoins épargnés par ce type de méningite. Des chercheurs de l’Inserm, du Collège de France, du CNRS, de l’Institut Pasteur, de l’Université de Paris et de l’AP-HP apportent désormais des éléments de réponse expliquant la prédisposition du nouveau-né à faire des méningites à Streptocoque du groupe B. Ils ont identifié et démontré que les récepteurs d’une protéine bactérienne permettant le franchissement de la barrière hémato-encéphalique[1] étaient surexprimés chez le nouveau-né et absents chez l’adulte. Les résultats de leurs travaux sont publiés dans la revue « Journal of Clinical Investigation ».

Les streptocoques du groupe B sont présents dans le microbiote vaginal de 20 à 30 % des femmes. Pour éviter l’infection du nouveau-né au moment de la naissance, qui pourrait entrainer une septicémie et dans les cas les plus graves, une méningite, de nombreux pays développés, dont la France, ont mis en place un dépistage vaginal quelques semaines avant l’accouchement. Les femmes porteuses de streptocoques du groupe B reçoivent dans ce cas des antibiotiques au moment de l’accouchement.

Cette stratégie a permis de réduire fortement l’incidence des infections à streptocoques du groupe B survenant durant la première semaine de vie mais n’a eu aucun effet sur celles survenant entre 1 semaine et 3 mois de vie.  

Par ailleurs, dans de nombreux pays du monde, aucun dépistage prénatal n’est proposé, et de nombreux bébés décèdent après la naissance d’une méningite à streptocoque du groupe B. Il s’agit donc d’un problème majeur de santé publique.

 

Prédisposition des nourrissons

Pour mieux comprendre la maladie et améliorer la prise en charge des mères et des enfants, la chercheuse Inserm Julie Guignot et son groupe de recherche à l’Institut Cochin (Inserm/CNRS/Université de Paris)[2] ont cherché à comprendre ce qui prédispose les nourrissons à cette maladie, alors que les enfants et les adultes ne sont qu’exceptionnellement concernés par ce type de méningite.

Dans de précédents travaux, les scientifiques avaient montré qu’un variant de streptocoque du groupe B était responsable de plus de 80 % des cas de méningites chez le nouveau-né. Ce variant exprime à sa surface des protéines spécifiques qui jouent un rôle essentiel dans le franchissement de la barrière hémato-encéphalique qui sépare le sang du cerveau.

Par des approches complémentaires, les chercheurs ont démontré qu’une des protéines exclusivement exprimées par ce variant reconnaissait de manière spécifique deux récepteurs présents dans les vaisseaux sanguins cérébraux qui constituent l’élément principal de la barrière hémato-encéphalique. Grâce à des prélèvements humains, ils ont démontré que ces récepteurs sont surexprimés chez les nouveau-nés. Ces récepteurs cérébraux ne sont en revanche pas présents chez l’adulte, ce qui explique que le streptocoque du groupe B n’est que très rarement responsable de méningites au-delà de la première année de vie, les bactéries ne pouvant atteindre le cerveau.

Grâce à des modèles animaux de méningite, les chercheurs ont confirmé leurs résultats, montrant que l’expression de ces récepteurs durant la période post-natale contribuait à la susceptibilité du nouveau-né à la méningite due au variant de streptocoque du groupe B.

Pour les chercheurs, ces résultats ouvrent des pistes thérapeutiques intéressantes. « L’idée serait de développer des traitements qui ciblent ces récepteurs au niveau de la barrière hémato-encéphalique. A plus long terme, nous aimerions étudier les facteurs de susceptibilité individuels conduisant au développement de ces infections. Ceci permettrait de réaliser un suivi personnalisé des nourrissons à risque nés de mère colonisée par ce variant », explique Julie Guignot.

 

[1] Barrière physiologique entre le sang et le cerveau qui protège ce dernier des substances toxiques et des micro-organismes pathogènes

[2] Le laboratoire Biologie moléculaire structurale et processus infectieux (CNRS/Institut Pasteur), le Centre interdisciplinaire de recherche en biologie (CNRS/Collège de France/INSERM), l’Institut pour l’avancée des biosciences (CNRS/INSERM/UGA), entre autres, ont également participé à ces travaux.

Maturation et persistance de la réponse lymphocytaire B mémoire anti-SARS-CoV-2

SARS-CoV-2 (en jaune) émergeant de la surface des cellules (bleu/rose) cultivées en laboratoire. Image capturée et colorisée, Rocky Mountain Laboratories (RML) Hamilton, Montana. © NIAID

Des équipes du Pr Matthieu Mahévas (hôpital Henri-Mondor APHP/Inserm/CNRS/Université Paris-Est Créteil), du Pr Jean-Claude Weill et du Dr Claude-Agnès Reynaud au sein de l’Institut Necker-Enfants Malades (Inserm/CNRS/Université de Paris) et au sein des unités de recherche de l’Institut Mondor de Recherche Biomédicale (UPEC/Inserm) ont étudié la mémoire immunitaire contre le SARS-Cov-2. Les résultats de cette étude qui a fait l’objet d’une publication dans la revue Cell le 2 février 2021 montrent la maturation et la persistance de la mémoire immunitaire B contre le virus au cours du temps.

La mémoire immunitaire est un mécanisme qui protège les individus contre la réinfection. Cette stratégie de défense de l’organisme qui est à la base du succès des vaccins comprend la production d’anticorps protecteurs dans le sang (détectés par sérologie) ainsi que la formation de cellules à mémoire, capables de se réactiver en cellules productrices d’anticorps lors d’une nouvelle infection.

Les équipes du Pr Matthieu Mahévas du service de médecine interne de l’hôpital Henri-Mondor AP-HP, de l’unité de recherche « Transfusion et maladies du globule rouge » de l’Institut Mondor de Recherche Biomédicale (U955 UPEC-Inserm), du Pr Jean-Claude Weill et du Dr Claude-Agnès Reynaud de l’Institut Necker-Enfants Malades (Inserm/CNRS/Université de Paris), ont étudié le devenir des cellules B mémoires dans deux cohortes de patients présentant une forme modérée ou sévère de COVID-19 jusqu’à 6 mois après l’infection.  

Cette étude, menée en collaboration avec l’équipe du Pr Félix Rey à l’Institut Pasteur, a permis de mettre en évidence l’accumulation des cellules mémoire spécifiques de la spicule (Spike) du SARS-Cov2 au cours du temps et de montrer que les anticorps produits par ces cellules mémoires neutralisaient le virus in vitro.

La maturation de la mémoire immunitaire B contre le virus au cours du temps est un résultat très encourageant pour la vaccination et la question de la protection contre les variants, car les cellules mémoires peuvent s’adapter aux pathogènes et réinitier une réponse immune efficace et intense lors d’une nouvelle exposition.

Ces travaux ont bénéficié d’un financement de la Fondation pour la Recherche Médicale dans le cadre de l’appel de l’ANR-Flash Covid (Projet Memo-Cov-2).

Rendre le cerveau résilient aux maladies neurodégénératives : une nouvelle piste identifiée dans la maladie de Huntington

Image de microscopie à balayage de la couche épendymaire d’une souris modèle de la maladie de Huntington. ©Inserm/Saudou, Frédéric

L’équipe de recherche (Sorbonne Université / Inserm / CNRS / AP-HP) dirigée par Christian Néri, directeur de recherche Inserm à l’Institut de biologie Paris-Seine1 en collaboration avec le Buck Institute for Research on Aging (USA), vient de mettre en évidence que les neurones du cerveau peuvent devenir sénescents très tôt dans la maladie de Huntington et que l’inhibition des gènes pro-sénescence possèdent des effets neuro-protecteurs. Publiés dans Aging Cell le 6 novembre 2020 et basés sur l’utilisation de cellules souches pluripotentes induites humaines, ces travaux suggèrent que les neurones sont victimes d’un vieillissement cellulaire accéléré dans la maladie de Huntington et fournissent de nouvelles pistes thérapeutiques pour une intervention précoce contre cette maladie.

Protéger les neurones du cerveau contre les maladies neurodégénératives comme la maladie de Huntington demeure un objectif difficile à atteindre.

Les chercheurs savaient déjà que face à ces maladies, le cerveau mobilise des mécanismes de défense qui permettent aux neurones et aux autres cellules du cerveau de compenser les dommages cellulaires qu’elles provoquent. Ils savaient également que l’efficacité de ces mécanismes dits de « compensation cellulaire » finit par s’épuiser. Ils peuvent en outre s’accompagner d’un effet délétère majeur : la sénescence cellulaire chronique, une forme de vieillissement accéléré des cellules qui favorise leur dysfonctionnement et peut conduire à leur dégénérescence.
En revanche, deux questions restaient en suspens : quels sont les mécanismes susceptibles de s’opposer à la sénescence cellulaire chronique dans les maladies neurodégénératives et à quel moment cette sénescence cellulaire peut-elle se mettre en place au cours de la vie des neurones ?

Cette nouvelle étude2 parue dans Aging Cell montre que la sénescence cellulaire peut s’installer dès les phases de différenciation neuronale pour s’aggraver ensuite dans les neurones matures. Les chercheurs ont aussi démontré que l’inhibition de gènes notoirement connus pour favoriser la sénescence cellulaire au cours du vieillissement possède des effets protecteurs, comme l’inhibition du gène p16INK4a, par exemple. Naturellement déclenchée par la cellule, elle reste cependant insuffisante pour empêcher la sénescence neuronale face à l’importance du stress cellulaire induit par la maladie de Huntington, d’où le besoin de développer des thérapies qui inhibent les gènes inducteurs de la sénescence cellulaire chronique.

Pour parvenir à ces résultats, l’équipe de recherche a utilisé des techniques de génomique permettant d’étudier la reprogrammation des mécanismes de réponse au stress cellulaire.

Ils ont ainsi pu l’observer dans un modèle cellulaire du noyau caudé – une structure cérébrale fortement affectée par la maladie de Huntington –  pendant la différenciation de cellules souches pluripotentes induites humaines en cellules neurales et en neurones.  Cette approche leur a permis de détecter que les principaux facteurs de défense et de réparation cellulaire, comme les protéines FOXOet les gènes qu’elles régulent, peuvent s’opposer au risque précoce de sénescence neuronale dans la maladie de Huntington en réduisant les niveaux d’expression des inducteurs de sénescence cellulaire.

 

Modèle de développement précoce de la sénescence neuronale (en haut et en rouge) et des réponses de compensation anti-sénescence (en bas et en vert) dans la maladie de Huntington. © Christian Neri, Institut de Biologie Paris-Seine, Paris, France.

En révélant la dynamique des effets de sénescence neuronale au cours du temps dans les neurones qui composent le noyau caudé, et en identifiant un nouveau mécanisme de régulation de ces effets, les chercheurs ouvrent une nouvelle piste thérapeutique pour rendre le cerveau biologiquement résilient aux effets précoces de la maladie de Huntington.

 

[1] Sorbonne Université, CNRS.
[2] Ces travaux de recherche ont mobilisé d’importants moyens de subventions en provenance de l’ANR, du NIH, de fondations, et d’associations de patients comme l’association Huntington France.
[3]Facteurs de contrôle de l’expression des gènes qui au travers de leurs gènes cibles, régulent plusieurs mécanismes d’homéostasie cellulaire.

Les émulsifiants alimentaires augmentent le pouvoir pathogène de certaines bactéries et le risque d’inflammation intestinale

Certaines bactéries du microbiote intestinal, marquées en rouge, sont capables de pénétrer la couche de mucus normalement stérile et marquée en vert. © Benoit Chassaing

L’alimentation jouerait un rôle dans le déclenchement d’inflammations intestinales pouvant aboutir au développement de certaines pathologies, comme la maladie de Crohn. Des chercheurs de l’Inserm, du CNRS et de Université de Paris ont montré que les émulsifiants alimentaires présents dans de nombreux plats transformés pouvaient avoir un impact délétère sur certaines bactéries spécifiques du microbiote intestinal, conduisant à une inflammation chronique. Leurs résultats sont publiés dans Cell Reports.

La prévalence des maladies inflammatoires chroniques de l’intestin ne cesse d’augmenter dans tous les pays du monde. Près de 20 millions de personnes seraient concernées. Caractérisées par l’inflammation de la paroi d’une partie du tube digestif, ces pathologies regroupent notamment la maladie de Crohn et les rectocolites hémorragiques.

Plusieurs facteurs, à la fois génétiques et environnementaux, ont été mis en cause pour expliquer l’inflammation de l’intestin associée à ces maladies. Depuis plusieurs années, le chercheur Inserm Benoît Chassaing et son équipe à l’Institut Cochin (Inserm/CNRS/Université de Paris) s’intéressent au rôle de l’alimentation et notamment à l’impact de certains additifs alimentaires comme les émulsifiants.

Largement utilisés par l’industrie agroalimentaire dans de nombreux produits transformés, les émulsifiants[1] ont pour fonction d’en améliorer la texture et d’en prolonger la durée de conservation. Par exemple, des émulsifiants comme la lécithine et les polysorbates permettent de garantir la texture onctueuse des crèmes glacées industrielles et d’éviter qu’elles ne fondent trop rapidement une fois servies.

Dans différents travaux s’appuyant sur des modèles animaux, les scientifiques ont déjà montré que la consommation d’émulsifiants alimentaires altérait négativement le microbiote de manière à favoriser l’inflammation.

Par ailleurs, dans des modèles de souris dont le microbiote était composé d’une faible diversité de bactéries, les chercheurs ont observé que les animaux étaient protégés contre les effets négatifs de certains émulsifiants.

Ils ont donc émis l’hypothèse que les émulsifiants impacteraient seulement certaines bactéries spécifiques, inoffensives dans des conditions « normales », mais ayant un potentiel pathogène. C’est seulement en présence d’agents émulsifiants que ces dernières seraient capables de favoriser le développement d’une inflammation intestinale chronique et de maladies associées.

E. coli comme un modèle

Dans le cadre de leur étude publiée dans Cell Reports, les chercheurs ont cette fois ci travaillé à partir de deux modèles de souris : l’un sans microbiote et l’autre avec un microbiote simple comportant seulement 8 espèces de bactérie. Ils les ont colonisés avec une souche de la bactérie Escherichia coli (les « bactéries AIEC ») associée à la maladie de Crohn.

Les chercheurs se sont intéressés aux effets de deux émulsifiants administrés suite à la colonisation des souris par les bactéries AIEC. Alors que la seule consommation d’agents émulsifiants était inoffensive chez ces animaux en l’absence de ces bactéries, ils ont constaté le développement d’une inflammation intestinale chronique et de dérégulations métaboliques lorsque ces dernières étaient présentes. Ainsi, le « couple » bactéries AIEC / agent émulsifiant était nécessaire et suffisant pour induire une inflammation intestinale chronique.

Des analyses supplémentaires ont révélé que lorsque ces bactéries étaient en contact avec les émulsifiants, elles sur-exprimaient des groupes de gènes qui augmentaient leur virulence et leur propension à induire l’inflammation. « Nous avons ainsi pu identifier un mécanisme par lequel les émulsifiants alimentaires peuvent favoriser l’inflammation intestinale chronique chez les personnes abritant certaines bactéries, telles que les bactéries AIEC, dans leur tractus digestif », souligne Benoît Chassaing qui a coordonné l’étude.

La prochaine étape consiste à lister l’ensemble des bactéries ayant les mêmes effets au contact de ces additifs alimentaires.

A plus long terme, des études pour identifier et stratifier les patients en fonction de la composition de leur microbiote et de leur risque d’inflammation pourraient être mises en place dans le but de faire de la prévention et de mettre en place des recommandations nutritionnelles personnalisées. Les personnes porteuses de microbiotes spécifiques, sensibles aux émulsifiants, pourraient en effet bénéficier de recommandations alimentaires ciblées.

« Et s’il est illusoire de penser que l’on pourra bannir les émulsifiants de notre alimentation, les modèles et les méthodologies que nous avons développés ici vont aussi nous permettre de tester l’action de plusieurs types d’agents émulsifiants sur le microbiote afin identifier ceux qui n’auraient pas d’effets délétères, et ainsi encourager leur usage », conclut Benoît Chassaing.

 

[1] Un émulsifiant est un composé qui a une affinité à la fois avec l’eau et avec l’huile et qui permet aux différentes phases d’un composé de rester mélangées

Le placenta conserverait la mémoire de l’exposition au tabac avant la grossesse

© fotografierende on Unsplash

L’arrêt du tabagisme avant une grossesse est reconnu pour diminuer considérablement les risques pour la santé de la mère et l’enfant. Des travaux d’une équipe de l’Inserm, du CNRS et de l’Université Grenoble Alpes au sein de l’Institut pour l’avancée des biosciences, publiés dans BMC Medicine vont plus loin, et montrent pour la première fois que la consommation de tabac, même lorsqu’elle est stoppée avant la grossesse, peut avoir des conséquences sur le placenta. À travers l’étude de l’ADN placentaire de 568 femmes, les chercheurs montrent que fumer pendant mais aussi avant la grossesse entraîne des modifications épigénétiques (méthylation de l’ADN) qui pourraient avoir des conséquences sur son déroulement.

Bien qu’il ait été montré que la consommation de tabac pendant la grossesse a de nombreuses conséquences néfastes sur la santé de la mère et de l’enfant, les mécanismes en jeu sont encore mal connus. De précédentes études ont associé la consommation de tabac durant la grossesse à des altérations de la méthylation de l’ADN – une forme de modification épigénétique (voir encadré) impliquée dans l’expression des gènes – dans le sang du cordon ombilical et dans les cellules du placenta. En effet, ce dernier joue un rôle crucial dans le développement du fœtus, tout en restant vulnérable à de nombreux composés chimiques.
En revanche, l’impact de l’exposition au tabac avant la grossesse sur la méthylation de l’ADN placentaire n’avait jusqu’à présent jamais été étudié.

Une équipe de l’Inserm, du CNRS et de l’Université Grenoble Alpes, au sein de l’Institut pour l’avancée des biosciences, a mesuré et comparé l’impact chez la femme enceinte de la consommation de tabac dans les 3 mois précédant la grossesse et/ou pendant la grossesse sur la méthylation de l’ADN placentaire.

Les chercheurs ont étudié l’ADN d’échantillons de placenta, prélevés au moment de l’accouchement chez 568 femmes de la cohorte EDEN [1] réparties en trois catégories : non-fumeuses (n’ayant pas fumé depuis les trois mois précédant la grossesse ni pendant la grossesse), anciennes fumeuses (arrêt de la consommation dans les trois mois précédant la grossesse) et fumeuses (consommation dans les trois mois précédant la grossesse et pendant toute la durée de la grossesse).

Les scientifiques ont observé que, chez les fumeuses, 178 régions du génome placentaire présentaient des altérations de la méthylation de l’ADN. Chez les anciennes fumeuses, les chercheurs ont identifié 26 de ces 178 régions dont la méthylation de l’ADN était encore altérée. La méthylation des 152 autres régions n’était altérée que chez les femmes ayant fumé pendant leur grossesse.

Les régions altérées correspondaient le plus souvent à des zones dites enhancers, qui contrôlent à distance l’activation ou la répression de gènes. De plus, une partie d’entre elles étaient situées sur des gènes connus pour avoir un rôle important dans le développement du fœtus.

« Si un grand nombre de régions semblent avoir un profil de méthylation normal chez les femmes après arrêt du tabac, la présence de certaines modifications de méthylation de l’ADN dans le placenta de femmes ayant arrêté de fumer avant la grossesse suggère l’existence d’une mémoire épigénétique de l’exposition au tabac », précise la chercheuse Inserm Johanna Lepeule qui a dirigé ces travaux. Selon elle, des modifications de la méthylation de l’ADN placentaire au niveau des gènes liés au développement du fœtus et des régions enhancers pourraient en partie expliquer les effets du tabagisme observés sur le fœtus et la santé ultérieure de l’enfant.

Les prochaines étapes de ces travaux viseront à déterminer si ces altérations impactent des mécanismes impliqués dans le développement du fœtus et si elles peuvent avoir des conséquences sur la santé de l’enfant.

[1] Les femmes enceintes ont été recrutées entre 2003 et 2006 dans les centres hospitalo-universitaires de Nancy et de Poitiers.

 

En savoir plus sur les modifications épigénétiques et la méthylation de l’ADN

Les modifications épigénétiques sont matérialisées par des marques biochimiques présentes sur l’ADN. Réversibles, elles n’entraînent pas de modification de la séquence d’ADN mais induisent toutefois des changements dans l’expression des gènes. Elles sont induites par l’environnement au sens large : la cellule reçoit des signaux l’informant sur son environnement, et se spécialise en conséquence, ou ajuste son activité. Les marques épigénétiques les mieux caractérisées sont les méthylations de l’ADN, impliquées dans le contrôle de l’expression des gènes.

fermer